Recent studies indicate that there is a marked reduction in trkA-containing nucleus basalis neurons in end-stage Alzheimer's disease (AD). We used unbiased stereological counting procedures to determine whether these changes extend to individuals with mild cognitive impairment (MCI) without dementia from a cohort of people enrolled in the Religious Orders Study. Thirty people (average age 84.7 years) came to autopsy. All individuals were cognitively tested within 12 months of death (average MMSE 24.2). Clinically, 9 had no cognitive impairment (NCI), 12 were categorized with MCI, and 9 had probable AD The average number of trkA-immunoreactive neurons in persons with NCI was 196, 632 +/- 12,093 (n = 9), for those with MCI it was 106,110 +/- 14,565, and for those with AD it was 86,978 +/- 12,141. Multiple comparisons showed that both those with MCI and those with AD had significant loss in the number of trkA-containing neurons compared to those with NCI (46% decrease for MCI, 56% for AD). An analysis of variance revealed that the total number of neurons containing trkA immunoreactivity was related to diagnostic classification (P < 0.001), with a significant reduction in AD and MCI compared to NCI but without a significant difference between MCI and AD. Cell density was similarly related to diagnostic classification (P < 0.001). There was a significant correlation with the Boston Naming Test and with a global score measure of cognitive function. The number of trkA-immunoreactive neurons was not correlated with MMSE, age at death, education, apolipoprotein E allele status, gender, or Braak score. These data indicate that alterations in the number of nucleus basalis neurons containing trkA immunoreactivity occurs early and are not accelerated from the transition from MCI to mild AD.
Degeneration of cholinergic nucleus basalis (NB) cortical projection neurons is associated with cognitive decline in late-stage Alzheimer's disease (AD). NB neuron survival is dependent on coexpression of the nerve growth factor (NGF) receptors p75(NTR) and TrkA, which bind NGF in cortical projection sites. We have shown previously a significant reduction of NB perikarya expressing p75(NTR) and TrkA protein during the early stages of AD. Whether there is a concomitant reduction in cortical levels of these receptors during the progression of AD is unknown. p75(NTR) and TrkA protein was evaluated by quantitative immunoblotting in five cortical regions (anterior cingulate, superior frontal, superior temporal, inferior parietal, and visual cortex) of individuals clinically diagnosed with no cognitive impairment (NCI), mild cognitive impairment (MCI), mild/moderate AD, or severe AD. Cortical p75(NTR) levels were stable across the diagnostic groups. In contrast, TrkA levels were reduced approximately 50% in mild/moderate and severe AD compared with NCI and MCI in all regions except visual cortex. Mini-Mental Status Examination scores correlated with TrkA levels in anterior cingulate, superior frontal, and superior temporal cortex. The selective reduction of cortical TrkA levels relative to p75(NTR) may have important consequences for cholinergic NB function during the transition from MCI to AD.
In normal adult retinas, NGF receptor TrkA is expressed in retinal ganglion cells (RGC), whereas glia express p75NTR . During retinal injury, endogenous NGF, TrkA, and p75 NTR are up-regulated. Paradoxically, neither endogenous NGF nor exogenous administration of wild type NGF can protect degenerating RGCs, even when administered at high frequency. Here we elucidate the relative contribution of NGF and each of its receptors to RGC degeneration in vivo. During retinal degeneration due to glaucoma or optic nerve transection, treatment with a mutant NGF that only activates TrkA, or with a biological response modifier that prevents endogenous NGF and pro-NGF from binding to p75 NTR affords significant neuroprotection. Treatment of normal eyes with an NGF mutant-selective p75 NTR agonist causes progressive RGC death, and in injured eyes it accelerates RGC death. The mechanism of p75 NTR action during retinal degeneration due to glaucoma is paracrine, by increasing production of neurotoxic proteins TNF-␣ and ␣ 2 -macroglobulin. Antagonists of p75 NTR inhibit TNF-␣ and ␣ 2 -macroglobulin up-regulation during disease, and afford neuroprotection. These data reveal a balance of neuroprotective and neurotoxic mechanisms in normal and diseased retinas, and validate each neurotrophin receptor as a pharmacological target for neuroprotection.Neuropathic diseases of the retina that involve the death of retinal ganglion cells (RGCs) 4 are irreversible. This is because RGCs are neurons whose fibers and axons make up the optic nerve (ON) and relay visual input from the retina to the cerebral cortex.Commonly used animal models of neuropathy that cause RGC death include ON axotomy and glaucoma. ON axotomy is an acute model of trauma where the optic nerve is completely severed, causing rapid death of the RGCs (ϳ90% within 2 weeks). Glaucoma is a chronic and progressive optic nerve neuropathy often concomitant with elevated intraocular pressure (IOP) (1). The etiology of RGC death in glaucoma remains unknown.One mechanism is the deprivation of survival signals that neurotrophins provide by acting through the TrkA and TrkB receptors expressed in RGCs (2, 3). Indeed, activation of TrkA (4) or TrkB (5) directly activate pro-survival signals during glaucoma and rescues RGCs from death during ON axotomy or glaucoma. However, it seems paradoxical that whereas TrkA activity is protective, neither endogenous nerve growth factor (NGF) (up-regulated in glaucoma (6)) nor exogenous NGF applied as a drug afford effective RGC neuroprotection during ON axotomy or glaucoma (4, 7).A second mechanism of RGC death in glaucoma is the increased production of tumor necrosis factor-␣ (TNF-␣) (8-10) and ␣ 2 -macroglobulin (␣ 2 M) (11). These neurotoxic factors are produced by activated microglia (12), which express the neurotrophin receptor p75 NTR (7). Indeed, the p75 NTR receptor has been implicated in the acute release of TNF-␣ during acute toxicity leading to RGC death within a few hours after intravitreal injection of glutamate (13) or after activatio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.