The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal dominant genes underlying these common neurodegenerative diseases. We have previously shown that a founder haplotype, covering the MOBKL2b, IFNK and C9ORF72 genes, is present in the majority of cases linked to this region. Here we show that there is a large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72 on the affected haplotype. This repeat expansion segregates perfectly with disease in the Finnish population, underlying 46.0% of familial ALS and 21.1% of sporadic ALS in that population. Taken together with the D90A SOD1 mutation, 87% of familial ALS in Finland is now explained by a simple monogenic cause. The repeat expansion is also present in one third of familial ALS cases of outbred European descent making it the most common genetic cause of these fatal neurodegenerative diseases identified to date.
Summary Using exome sequencing, we identified a p.R191Q amino acid change in the valosin-containing protein (VCP) gene in an Italian family with autosomal dominantly inherited amyotrophic lateral sclerosis (ALS). Mutations in VCP have previously been identified in families with Inclusion Body Myopathy, Paget’s disease and Frontotemporal Dementia (IBMPFD). Screening of VCP in a cohort of 210 familial ALS cases and 78 autopsy-proven ALS cases identified four additional mutations including a p.R155H mutation in a pathologically-proven case of ALS. VCP protein is essential for maturation of ubiquitin-containing autophagosomes, and mutant VCP toxicity is partially mediated through its effect on TDP-43 protein, a major constituent of ubiquitin inclusions that neuropathologically characterize ALS. Our data broaden the phenotype of IBMPFD to include motor neuron degeneration, suggest that VCP mutations may account for ~1–2% of familial ALS, and represent the first evidence directly implicating defects in the ubiquitination/protein degradation pathway in motor neuron degeneration.
Brain-derived neurotrophic factor (BDNF) is critical for the function and survival of neurons that degenerate in the late stage of Alzheimer's disease (AD). There are two forms of BDNF, the BDNF precursor (proBDNF) and mature BDNF, in human brain. Previous studies have shown that BDNF mRNA and protein, including proBDNF, are dramatically decreased in end-stage AD brain. To determine whether this BDNF decrease is an early or late event during the progression of cognitive decline, we used western blotting to measure the relative amounts of BDNF proteins in the parietal cortex of subjects clinically classified with no cognitive impairment (NCI), mild cognitive impairment (MCI) or mild to moderate AD. We found that the amount of proBDNF decreased 21 and 30% in MCI and AD groups, respectively, as compared with NCI, consistent with our previous results of a 40% decrease in end-stage AD. Mature BDNF was reduced 34 and 62% in MCI and AD groups, respectively. Thus, the decrease in mature BDNF and proBDNF precedes the decline in choline acetyltransferase activity which occurs later in AD. Both proBDNF and mature BDNF levels were positively correlated with cognitive measures such as the Global Cognitive Score and the Mini Mental State Examination score. These results demonstrate that the reduction of both forms of BDNF occurs early in the course of AD and correlates with loss of cognitive function, suggesting that proBDNF and BDNF play a role in synaptic loss and cellular dysfunction underlying cognitive impairment in AD. Keywords: brain-derived neurotrophic factor, mild cognitive impairment, neurotrophin, parietal cortex, precursor form of brain-derived neurotrophic factor, western blotting.
To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
Background Endocytic dysfunction and neurotrophin signaling deficits may underlie the selective vulnerability of hippocampal neurons during the progression of Alzheimer’s disease (AD), although there is little direct in vivo and biochemical evidence to support this hypothesis. Methods Microarray analysis of hippocampal CA1 pyramidal neurons acquired via laser capture microdissection (LCM) was performed using postmortem brain tissue. Validation was achieved using real-time quantitative PCR (qPCR) and immunoblot analysis. Mechanistic studies were performed using human fibroblasts subjected to overexpression with viral vectors or knockdown via siRNA. Results Expression levels of genes regulating early endosomes (rab5) and late endosomes (rab7) are selectively up regulated in homogeneous populations of CA1 neurons from individuals with mild cognitive impairment (MCI) and AD. The levels of these genes are selectively increased as antemortem measures of cognition decline during AD progression. Hippocampal qPCR and immunoblot analyses confirmed increased levels of these transcripts and their respective protein products. Elevation of select rab GTPases regulating endocytosis paralleled the down regulation of genes encoding the neurotrophin receptors TrkB and TrkC. Overexpression of rab5 in cells suppressed TrkB expression, whereas knockdown of TrkB expression did not alter rab5 levels, suggesting that TrkB down regulation is a consequence of endosomal dysfunction associated with elevated rab5 levels in early AD. Conclusions These data support the hypothesis that neuronal endosomal dysfunction is associated with preclinical AD. Increased endocytic pathway activity, driven by elevated rab GTPase expression, may result in long term deficits in hippocampal neurotrophic signaling and represent a key pathogenic mechanism underlying AD progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.