Advanced carbon nanorod promoted binary CaO-La2O3 system with improved physical properties, tailored surface morphology and chemistry were developed in vacuumimpregnating methods. The nanostructured catalyst (CaO-La2O3/AC nanocatalyst) was prepared to convert high FFA waste cooking oil into biodiesel via one step esterificationtransesterification reaction. The novel catalyst was characterized by FTIR, SEM, XRD, TGA, BET, TPD-CO2 and TPD-NH3. The high catalytic activity of the nanocatalyst was mainly depends on the high acid and basic density of active sites that contributed from the synergic effect between mesoporous carbon and binary metallic system, which allowed more occurrence of simultaneous esterification-transesterification process of high FFA waste oil without additional pretreatment step. Result showed maximum 98.6±0.5% with acid value 0.4±0.5 mg KOH/g of triglyceride conversion under optimal condition at 3% of catalyst, methanol:oil ratio of 16:1, 100 °C within 4h of reaction. Furthermore, bi-metallic catalyst with stable carbon nanorod support capable to maintained high reusability with high FAME yield (> 98%) with low acid value (<0.5 mg KOH/g) for 5 cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.