It has been observed that the polished neck of dental implants does not osseointegrate as do textured surfaces. Similar findings were reported in the orthopedic literature on artificial hip endoprostheses. In Dentistry, lack of osseointegration was attributed to increased pressure on the osseous bed during implant placement, establishment of a physiological "biologic width", stress shielding and lack of adequate biomechanical coupling between the load-bearing implant surface and the surrounding bone. Among the many variables that may affect osseointegration, this analysis proposes to include stress transfer as a significant one. Therefore the present report discusses the relationship between the stresses applied and bone homeostasis. Any viable osseous structure (including the tissue that surrounds the polished implant neck) is subjected to periodic phases of resorption and formation. Clinical and experimental data have shown the detrimental effects of lack of function in that bone mass decreases with time. Due to inadequate mechanical stimuli, bone that is resorbed during normal turnover is redeposited in lesser amounts than previously, a process observed clinically as resorption. The stress ranges which cause bone to resorb, maintain or increase its mass and the level that eventually causes bone to fracture have been delimited in the literature. Applying these values to the situation to dental implants, it follows that if it is to be stable, crestal bone must be subjected to suitable levels of mechanical stimulation. We suggest that smooth surfaces will not provide adequate biomechanical coupling with the bone surrounding the implant neck in that the stress range induced by a polished surface is limited. We propose that the surface texture of threaded, plasma-coated or sandblasted implants generates a heterogeneous stress field around an implant in function. By design, such a stress field includes force levels which are conducive to bone formation. Hence, during the formation phase of bone turnover, osteoblast lineages are much more likely to be stimulated by biomechanical signals of appropriate magnitude.
Objective The use of a 30 µm alumina–silica coated particle sand (CoJet™ Sand, 3M Espe), has shown to enhance the adhesion of resin cements to Y-TZP. The question is whether or not sandblasting 30 µm particles does negatively affect the fatigue limit (S–N curves) and the cumulative survival of Y-TZP ceramics. Method Four zirconia materials tested were: Zeno (ZW) (Wieland), Everest ZS (KV) (KaVo), Lava white (LV) and Lava colored (LVB) (3M Espe). Fatigue testing (S–N) was performed on 66 bar of 3 mm × 5 mm × 40 mm with beveled edges for each zirconia material provided by the manufacturers. One half of the specimens were CoJet sandblasted in the middle of the tensile side on a surface of 5 mm × 6 mm. Cyclic fatigue (N = 30/group) (sinusoidal loading/unloading at 10 Hz between 10% and 100% load) was performed in 3-point-bending in a water tank. Stress levels were lowered from the initial static value (average of N = 3) until surviving 1 million cycles. Fatigue limits were determined from trend lines. Kaplan–Meier survival analysis was performed to determine the failure stress at the median percentile survival level for 1 million of cycles before and after sandblasting. The statistical analyses used the log-rank test. Characterization of the critical flaw was performed by SEM for the majority of the failed specimens. Results The fatigue limits “as received” (ctr) were: LV = 720 MPa, LVB = 600 MPa, KV = 560 MPa, ZW = 470 MPa. The fatigue limits “after CoJet sandblasting” were: LV = 840 MPa, LVB = 788 MPa, KV = 645 MPa, ZW = 540 MPa. The increase in fatigue limit after sandblasting was 15% for Zeno (ZW) and Everest (KV), 17% for Lava (LV) and 31% for Lava colored (LVB). The KM median survival stresses in MPa were: ZW(ctr) = 549 (543–555), ZW(s) = 587 (545–629), KV(ctr) = 593 (579–607), KV(s) = 676 (655–697), LVB(ctr) = 635 (578–692), LVB(s) = 809 (787–831), LV(ctr) = 743 (729–757), LV(s) = 908 (840–976). Log-rank tests were significantly different (p < 0.001) for all sandblasted groups vs. the “as received” except for Zeno (Wieland) (p = 0.295). Failures started from both intrinsic and machined flaws. Significance 30 µm particle sandblasting did significantly improve the fatigue behavior of three out of four Y-TZP ceramic materials and can therefore be recommended for adhesive cementation procedures. This study was supported in part by grants from the Swiss Society for Reconstructive Dentistry (SSRD) and 3M Espe.
Objectives-To demonstrate the effectiveness of in vivo replicas of fractured ceramic surfaces for descriptive fractography as applied to the analysis of clinical failures.Methods-The fracture surface topography of partially failed veneering ceramic of a Procera Alumina molar and an In Ceram Zirconia premolar were examined utilizing gold-coated epoxy poured replicas viewed using scanning electron microscopy. The replicas were inspected for fractographic features such as hackle, wake hackle, twist hackle, compression curl and arrest lines for determination of the direction of crack propagation and location of the origin.Results-For both veneering ceramics, replicas provided an excellent reproduction of the fractured surfaces. Fine details including all characteristic fracture features produced by the interaction of the advancing crack with the material's microstructure could be recognized. The observed features are indicators of the local direction of crack propagation and were used to trace the crack's progression back to its initial starting zone (the origin). Drawbacks of replicas such as artifacts (air bubbles) or imperfections resulting from inadequate epoxy pouring were noted but not critical for the overall analysis of the fractured surfaces.Significance-The replica technique proved to be easy to use and allowed an excellent reproduction of failed ceramic surfaces. It should be applied before attempting to remove any failed part remaining in situ as the fracture surface may be damaged during this procedure. These two case studies are intended as an introduction for the clinical researcher in using qualitative (descriptive) fractography as a tool for understanding fracture processes in brittle restorative materials and, secondarily, to draw conclusions as to possible design inadequacies in failed restorations.
This study examined the time-dependent response of bovine periodontal ligament (PDL). Applying linear viscoelastic theory, the objective was 1) to examine the linearity of the PDL's response in terms of its scaling and superposition property and 2) to generate the phase lag-vs.-frequency spectrum graph. PDL specimens were tested under three separate straining conditions: 1) tension ramp tests conducted at different strain rates, 2) pulling step-straining to 0.3 in discrete tests and to 0.3 and 0.6 in one continuous run, and 3) tension-compression sinusoidal oscillations. To this effect, bar-shaped specimens of bovine roots that comprised portions of dentin, PDL tissue, and alveolar bone were produced and strained in a microtensile machine. The experimental data demonstrated that neither the scaling nor the superposition properties were verified and that the viscoelastic response of the PDL was nonlinear. The PDL's elastic response was essentially stiffening, and its viscous component was pseudoplastic. The tangent of the PDL's strain-stress phase lag was in the 0-0.1 range in the tensile direction and in the 0.35-0.45 range in the compressive direction. In line with other biological tissues, the phase lag was largely independent of frequency. By use of the data generated, a mathematical model is outlined that reproduces both the elastic stiffening and viscous thinning of the PDL's response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.