Micro-light emitting diode ͑LED͒ arrays with diameters of 4 to 20 m have been fabricated and were found to be much more efficient light emitters compared to their broad-area counterparts, with up to five times enhancement in optical power densities. The possible mechanisms responsible for the improvement in performance were investigated. Strain relaxation in the microstructures as measured by Raman spectroscopy was not observed, arguing against theories of an increase in internal quantum efficiency due to a reduction of the piezoelectric field put forward by other groups. Optical microscope images show intense light emission at the periphery of the devices, as a result of light scattering off the etched sidewalls. This increases the extraction efficiency relative to broad area devices and boosts the forward optical output. In addition, spectra of the forward emitted light reveal the presence of resonant cavity modes ͓whispering gallery ͑WG͒ modes in particular͔ which appear to play a role in enhancing the optical output.
GaN micro-light-emitting diodes (micro-LEDs) with monolithically integrated microlenses have been demonstrated. Microlenses, with a focal length of 44 µm and a root mean square roughness of ~1 nm, have been fabricated on the polished back surface of a sapphire substrate of an array of micro-LEDs by resist thermal reflow and plasma etching. The optical properties of the microlenses have been demonstrated to alter the emission pattern of the LED emitters. The cone of light emitted from this hybrid device is significantly less divergent than a conventional broad-area device. This combination of micro-LED and microlens technologies offers the potential for further improvement in the overall efficiency of GaN-based light emitters
Light-emitting diodes ͑LEDs͒ based on an interconnected array of GaN/InGaN micro-ring elements have been demonstrated. The devices have electrical characteristics similar to those of conventional broad-area devices. However, due to the large surface areas provided by the sidewalls, the extraction efficiency is greatly enhanced. Intense light emission at the periphery of the micro-rings is observed upon excitation by an electron beam, suggesting scattering of the photons which are extracted through the sidewalls. The devices provide a doubling in total light output compared to a broad-area reference LED of equal light-generation area.
Matrix-addressable arrays of InGaN micro-lightemitting diodes with 128 96 pixels and a resolution of 1200 dpi have been fabricated using a novel "sloped sidewall" process. The devices have been fabricated on InGaN blue and green wafers, emitting light at the wavelengths of 468 and 508 nm, respectively. A simple circuit, which enables the display of an arrow pattern with 60% of the pixels turned on, was used for device testing. At an injection current of 60 mA, the devices deliver 3.3 (blue) and 2.4 mW (green) of output power, corresponding to a luminance of more than 30 000 Cd/m 2. These high-brightness and highly versatile devices are certainly an attractive form of emissive micro-display.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.