Localized currents driven by pressure gradients play a pivotal role in the magnetohydrodynamic stability of toroidal plasma confinement devices. We have measured the currents generated in the edge of L- (low) and H- (high confinement) mode discharges on the DIII-D tokamak, utilizing the Zeeman effect in an injected lithium beam to obtain high resolution profiles of the poloidal magnetic field. We find current densities in excess of 1 MA/m2 in a 1 to 2 cm region near the peak of the edge pressure gradient. These values are sufficient to challenge edge stability theories based on specific current formation models.
The Contractor Renormalization (CORE) method is applied in combination with modern effective-theory techniques to the nuclear many-body problem. A one-dimensional-yet "realistic"-nucleon-nucleon potential is introduced to test these novel ideas. It is found that the magnitude of "model-space" (CORE) corrections diminishes considerably when an effective potential that eliminates the hard-momentum components of the potential is first introduced. As a result, accurate predictions for the ground-state energy of the there-body system are made with relatively little computational effort when both techniques are used in a complementary fashion.
7
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.