In this paper, we report the growth of ZnO films on silicon substrates using a pulsed laser deposition technique. These films were deposited on Si(111) directly as well as by using thin buffer layers of AlN and GaN. All the films were found to have c-axis-preferred orientation aligned with normal to the substrate. Films with AlN and GaN buffer layers were epitaxial with preferred in-plane orientation, while those directly grown on Si(111) were found to have random in-plane orientation. A decrease in the frequency of the Raman mode and a red shift of the band-edge photoluminescence peak due to the presence of tensile strain in the film, was observed. Various possible sources for the observed biaxial strain are discussed.
We have designed a promising contact scheme to p-GaN, where Au/Ni/Au layers are deposited on p-GaN and annealed in air for 30 min at 470 °C to produce low-resistivity ohmic contacts. The Au layer in contact with p-GaN grows epitaxially via domain matching epitaxy, which acts as a template for NiO growth via lattice matching epitaxy. The 〈111〉 oriented gold rotates 30° in the basal (0001) plane of GaN by 30° with the following orientation relationship: [111]Au//[0001]GaN; [112̄]Au//[21̄1̄0]GaN. As a result, we can create epitaxial NiO–Au composite, where Au as well as NiO are in contact with p-GaN. This epitaxial composite structure is envisaged to be important in achieving low-resistivity ohmic contacts in p-GaN. We present the details of atomic structure, epitaxial relationship, chemistry, and electrical properties of ohmic contacts.
We investigated the effect of the microstructure of TiN films on the diffusion behavior of Cu. Cu/TiN films were synthesized on Si(100) substrate by the pulsed laser deposition (PLD) technique. Three different microstructures of TiN were achieved by growing the films at different substrate temperatures, where higher deposition temperatures (∼650 °C) led to epitaxial growth by the mechanism of domain matching epitaxy and lower temperature depositions resulted in polycrystalline and nanocrystalline TiN films. These structures were characterized using x-ray diffraction and high-resolution transmission electron microscopy. Cu was deposited in situ on the samples with three different microstructures of TiN films on Si(100) by PLD. All three samples were simultaneously annealed at 500 °C for 30 min in high vacuum to study the effect of diffusion characteristics of Cu as a function of microstructure of the TiN films. Secondary ion mass spectroscopy, Z-contrast imaging and electron energy-loss spectroscopy were used to understand the diffusion mechanisms and rationalize results in different microstructures.
Tensile tests were performed for Zn at room temperature, which show elongations of 110%–20% for average grain sizes of 240–23 nm, respectively. The ductility of ultrafine-grained and nanocrystalline Zn was found to decrease with grain size refinement. The deformation mechanisms in ultrafine-grained Zn are believed to be a mixture of grain boundary sliding of small nanograins and intra-grain dislocation creep within the large grains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.