The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proton fluxes with kinetic energies from 40 GeV to 100 TeV, with 2 1 / 2 years of data recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time that an experiment directly measures the cosmic ray protons up to~100 TeV with high statistics. The measured spectrum confirms the spectral hardening at~300 GeV found by previous experiments and reveals a softening at~13.6 TeV, with the spectral index changing from~2.60 to~2.85. Our result suggests the existence of a new spectral feature of cosmic rays at energies lower than the so-called knee and sheds new light on the origin of Galactic cosmic rays.
The limitations of the alkane technique in estimating the diet components of herbivores call for the introduction of new diet composition markers. Recently, long-chain alcohols (alcohols) and long-chain fatty acids (acids) have received the most attention and show great potential, when combined with alkanes, to estimate composition of complex diets. In the current study, faecal recoveries of alcohols and acids were determined in sheep in four different live weight groups fed three herbage species, either Leymus chinensis, L. dasystachys or Elymus sibiricum. Analysis of variance (ANOVA) was used to examine the effects of herbage species and live weight of sheep on faecal recoveries of individual alcohols and acids. Further, an indoor experiment with six sheep fed a diet of equal proportions, on dry matter (DM) basis, of three herbages was performed, allowing to assess the accuracy of alcohols and/or acids in combination with alkanes, to estimate diet composition. A one-sample t-test was carried out to test the accuracy of these estimates. Results of the first experiment indicated that the faecal recoveries of alcohols and acids were significantly affected by herbage species ( P , 0.05). While the effects were significant or near significant for the faecal recoveries of some alcohols (C24-ol, C30-ol and C26-ol) ( P < 0.05), no effect of live weight on faecal recoveries of acids was observed ( P . 0.05). Therefore, adjustments based on diet-specific faecal recoveries might improve diet composition estimates. This was illustrated by the results of the second experiment. The diet composition estimated from alcohols or all combinations of alcohols with other marker types, after diet-specific correction of faecal recoveries, did not significantly differ from the actual composition ( P . 0.05). However, using acids as additional markers resulted in poorer diet composition estimates. This study confirmed the utility of alcohols, combined with alkanes, as markers to estimate composition of complex diets. Although corrections based on mean faecal recoveries, average over animals and diets, resulted in some accuracy loss, results were still satisfactory and better than without recovery correction.
The enantioselective synthesis of 2,3-dihydrobenzofurans was achieved by using two sequential C-H functionalization reactions, a rhodium-catalyzed enantioselective intermolecular C-H insertion followed by a palladium-catalyzed C-H activation/C-O cyclization. Further diversification of the 2,3-dihydrobenzofuran structures was possible by a subsequent palladium-catalyzed intermolecular Heck-type sp(2) C-H functionalization.
The rhodium-catalyzed reaction of electron-deficient alkenes with substituted aryldiazoacetates and vinyldiazoacetates results in highly stereoselective cyclopropanations. With adamantylglycine derived catalyst Rh2(S-TCPTAD)4, high asymmetric induction (up to 98% ee) can be obtained with a range of substrates. Computational studies suggest that the reaction is facilitated by weak interaction between the carbenoid and the substrate carbonyl but subsequently proceeds via different pathways depending on the nature of the carbonyl.. Acrylates and acrylamides result in the formation of cyclopropanation products while the use of unsaturated aldehydes and ketones results in the formation of epoxides.
CONSPECTUS The control of regiochemistry is a considerable challenge in the development of a wide array of catalytic processes. Simple π-components such as alkenes, alkynes, 1,3-dienes, and allenes are among the many classes of substrates that present complexities in regioselective catalysis. Considering an internal alkyne as a representative example, when steric and electronic differences between the two substituents are minimal, differentiating among the two termini of the alkyne presents a great challenge. In cases where the differences between the alkyne substituents are substantial, overcoming those biases to access the regioisomer opposite that favored by substrate biases often presents an even greater challenge. Nickel-catalyzed reductive couplings of unsymmetrical π-components make up a group of reactions where control of regiochemistry presents a challenging but important objective. In the course of our studies of aldehyde-alkyne reductive couplings, complementary solutions to challenges in regiocontrol have been developed. Through careful selection of the ligand and reductant, as well as the more subtle reaction variables such as temperature and concentration, effective protocols have been established that allow highly selective access to either regiosiomer of the the allylic alcohol products using a wide range of unsymmetrical alkynes. Computational studies and an evaluation of reaction kinetics have provided an understanding of the origin of the regioselectivity control. Throughout the various procedures described, the development of ligand-substrate interactions play a key role, and the overall kinetic descriptions were found to differ between protocols. Rational alteration of the rate-determining step plays a key role in the regiochemistry reversal strategy, and in one instance, the two possible regioisomeric outcomes in a single reaction were found to operate by different kinetic descriptions. With this mechanistic information in hand, the empirical factors that influence regiochemistry can be readily understood, and more importantly, the insights suggest simple and predictable experimental variables to achieving a desired reaction outcome. These studies thus present a detailed picture of the influences that control regioselectivity in a specific catalytic reaction, but they also delineate strategies for regiocontrol that may extend to numerous classes of reactions. The work provides an illustration of how insights into the kinetics and mechanism of a catalytic process can rationalize subtle empirical findings and suggest simple and rational modifications in procedure to access a desirable reaction outcome. Furthermore, these studies present an illustration of how important challenges in organic synthesis can be met by novel reactivity afforded by base metal catalysis. The use of nickel catalysis in this instance not only provides an inexpensive and sustainable method for catalysis, but also enables unique reactivity patterns not accessible to other metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.