This paper presents an effort to implement a recently proposed meshless dynamic cloud method [Hong Wang et al. A study of gridless method with dynamic clouds of points for solving unsteady CFD problems in aerodynamics, Int. J. Numer. Meth. Fluids 2010; 64: 98-118] on modern high-performance graphic processing units (GPUs) with the compute unified device architecture (CUDA) programming model. Within the framework of the meshless method, clouds of points used as basic computational stencils are distributed in the whole flow domain. The spatial derivatives of the governing equations are discretised by the moving-least square scheme on every cloud of points. Roe's approximate Riemann solver is adopted to compute the convective flux. A dual-time stepping approach, which iterates in physical and pseudo temporal spaces, is employed to obtain the time-accurate solution. Simulation of steady compressible flows over a fixed aerofoil is firstly carried out to verify the GPU implementation of the method. Then it is extended to compute unsteady flows past oscillatory aerofoils. Numerical outcomes are compared with experimental and/or other reference results to validate the method. Significant performance speedup of more than an order of magnitude is verified by the numerical results. Systematic analysis shows that GPU is more energy efficient than CPU for solving aerodynamic problems. This demonstrates the potential of the proposed method to solve fluid-structure interaction problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.