Abstract. The extent of the exosphere of Mercury above the planet's limb could for the first time be observed by detecting an excess absorption in the solar sodium line D 2 during the transit of Mercury across the solar disk on 2003 May 7. The observations were performed with a 2d Fabry-Perot spectrograph of the Vacuum Tower Telescope at Izaña, Tenerife. The absorption excess, blue-shifted by 13 pm relative to the solar line, is mainly concentrated near the polar regions. There, the absorption excess can be traced up to ≈700 km above the limb. Between the two polar regions, along the eastern limb, a weaker absorption excess can be seen. A possible streamer-like feature stretches more than 2000 km above the northern region. Assuming the density to decrease exponentially with height, we derive for the polar maxima vertical column densities of 3 × 10 10 cm −2 , volume densities at the surface of 2.5 × 10 3 cm −3 , and a density scale height of 150 km.
The extended Greenwich data set consisting of positions of sunspot groups is used for the investigation of cycle-related variations of the solar rotation in the years 1874 -1981. Applying the residual method, which yields a single number for each year describing the average deviation from the mean value of the solar rotation, the dependence of the rotation velocity residual on the phase of the solar cycle is investigated. A secular deceleration of the solar rotation was found: the slope being statistically significant at the 3σ level. Periods of 33, 22, 11, 5.2, and 3.5 years can be identified in the power spectra. The rotation velocity residuals were averaged for all years with the same solar cycle phase relative to the nearest preceding sunspot minimum. The variation pattern reveals a higher than average rotation velocity in the minimum of activity and, to a lesser extent, also around the maximum of activity. The analysis was repeated with several changes in the reduction method, such as elimination of the secular trend, application of statistical weights, different cutoffs of the central meridian distance, division of the latitude into subregions and treating data from the years of activity minima separately. The results obtained are compared with those from the literature, and an interpretation of the observed phenomena is proposed.
Abstract. Full-disc solar images obtained with the Extreme Ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory (SOHO) are used to analyse solar differential rotation by tracing coronal bright points for the period June 4, 1998 to May 22, 1999. A method for the simultaneous determination of the true solar synodic rotation velocity and the height of the tracers is applied to data sets analysed with interactive and automatic methods. The calculated height of coronal bright points is on average 8000-12000 km above the photosphere. Corrected rotation velocities are transformed into sidereal ones and compared with results from the literature, obtained with various methods and tracers. The differential rotation profile determined by coronal bright points with the interactive method corresponds roughly to the profile obtained by correlating photospheric magnetic fields and the profile obtained from the automatic method corresponds roughly to the rotation of sunspot groups. This result is interpreted in terms of the differences obtained in the latitudinal distribution of coronal bright points using the two methods.
The goal of this paper is to investigate Reynolds stresses and to check if it is plausible that they are responsible for angular momentum transfer toward the solar equator. We also analysed meridional velocity, rotation velocity residuals and correlation between the velocities. We used sunspot groups position measurements from GPR (Greenwich Photographic Result) and SOON/USAF/NOAA (Solar Observing Optical Network/United States Air Force/National Oceanic and Atmospheric Administration) databases covering the period from 1878 until 2011. In order to calculate velocities we used daily motion of sunspot groups. The sample was also limited to ±58 • in Central Meridian Distance (CMD) in order to avoid solar limb effects. We mainly investigated velocity patterns depending on solar cycle phase and latitude. We found that meridional motion of sunspot groups is toward the centre of activity from all available latitudes and in all phases of the solar cycle. The range of meridional velocities is ±10 m s −1 . Horizontal Reynolds stress is negative at all available latitudes and indicates that there is a minimum value (q ≈ -3000 m 2 s −2 ) located at b ≈ ±30 • . In our convention this means that angular momentum is transported toward the solar equator in agreement with the observed rotational profile of the Sun.
Abstract. Full-disc solar images obtained with the Extreme Ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory (SOHO) were used to analyse solar differential rotation determined by tracing coronal bright points. Two different procedures were developed and compared: an interactive and an automatic method. The interactive method is based on the visual tracing of coronal bright points in consecutive images using computer programs written in the Interactive Data Language (IDL). The automatic method relies on the IDL procedure "Regions Of Interest (ROI) segmentation" which is used to detect and follow bright points in triplets of consecutive images. The test-results obtained applying both methods by different persons who performed tracing are presented and compared. The advantages and disadvantages of the two methods are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.