The symmetry breaking in a typical dielectric GMR-grating structure allows the coupling of the incident wave with the so-called Symmetry-Protected Modes (SPM). In this present work, the excitation conditions of such particular modes are investigated. A parametric study including the grating dimensions is carried out to exploit them for a blood refractive index sensing with higher Sensitivity (S) and Figure Of Merit (FOM). To our knowledge, the performances obtained by FDTD calculations (Q = 2.1 × 104, S = 657 nm/RIU and FOM ≃ ~9 112 RIU−1) and FMM calculations (Q = 3 × 106, S = 656 nm/RIU and FOM ≃ ~1.64 × 106 RIU−1) are the highest level reached.
The Fourier modal method equipped with the concept of adaptive spatial resolution (FMMASR) is shown to be naturally more stable than the classical Fourier modal method toward spurious modes that appear with metallic structures. It is demonstrated that this stability can be further improved by reformulating the eigenvalue problem of the FMMASR.
A numerical improvement of the Fourier modal method with adaptive spatial resolution is obtained. It is shown that the solutions of all the eigenvalue problems corresponding to homogeneous regions can be deduced straightforwardly from the solution of one of these problems. Numerical examples demonstrate that computation time saving can be substantial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.