Inaccurate electrode placement and differences in inter-individual human anatomies can lead to misinterpretation of ECG examination. The aim of the study was to investigate the effect of precordial electrodes displacement on morphology of the ECG signal in a group of 60 patients with diagnosed cardiac disease. Shapes of ECG signals recorded from precordial leads were compared with signals interpolated at the points located at a distance up to 5 cm from lead location. Shape differences of the QRS and ST-T-U complexes were quantified using the distribution function method, correlation coefficient, root-mean-square error (RMSE), and normalized RMSE. The relative variability (RV) index was calculated to quantify inter-individual variability. ECG morphology changes were prominent in all shape parameters beyond 2 cm distance to precordial leads. Lead V2 was the most sensitive to displacement errors, followed by leads V3, V1, and V4, for which the direction of electrodes displacement plays a key role. No visible changes in ECG morphology were observed in leads V5 and V6, only scaling effect of signal amplitude. The RV ranged from 0.639 to 0.989. Distortions in ECG tracings increase with the distance from precordial lead, which are specific to chosen electrode, direction of displacement, and for ECG segment selected for calculations.
T-wave alternans (TWA) allows for identification of patients at an increased risk of ventricular arrhythmia. Stress test, which increases heart rate in controlled manner, is used for TWA measurement. However, the TWA detection and analysis are often disturbed by muscular interference. The evaluation of wavelet based denoising methods was performed to find optimal algorithm for TWA analysis. ECG signals recorded in twelve patients with cardiac disease were analyzed. In seven of them significant Twave alternans magnitude was detected. The application of wavelet based denoising method in the pre-processing stage increases the T-wave alternans magnitude as well as the number of BSPM signals where TWA was detected.
Health aspects of the use of radiating devices, like mobile phones, are still a public concern. Stand-alone electrocardiographic systems and those built-in, more sophisticated, medical devices have become a standard tool used in everyday medical practice. GSM mobile phones might be a potential source of electromagnetic interference (EMI) which may affect reliability of medical appliances. Risk of such event is particularly high in places remote from GSM base stations in which the signal received by GSM mobile phone is weak. In such locations an increase in power of transmitted radio signal is necessary to enhance quality of the communication. In consequence, the risk of interference of electronic devices increases because of the high level of EMI.In the present paper the spatial, temporal, and spectral characteristics of the interference have been examined. The influence of GSM mobile phone on multilead ECG recordings was studied. It was observed that the electrocardiographic system was vulnerable to the interference generated by the GSM mobile phone working with maximum transmit power and in DTX mode when the device was placed in a distance shorter than 7.5 cm from the ECG electrode located on the surface of the chest. Negligible EMI was encountered at any longer distance.
IntroductionThe aim of the study was to assess myocardial ischemia by analysis of ST-segment changes in high-resolution body surface potential maps (HR-BSPM) measured at rest and during an exercise stress test.Material and methodsThe study was carried out on a group of 28 patients with stable coronary artery disease and 15 healthy volunteers. The HR-BSPM were measured at rest and during the exercise stress test on a supine ergometer. The workload was increased in stages by 25 W every 2 min, beginning at 50 W. The maps of ST-segment depression (ST60) were calculated from time averaged recordings at rest and at maximal workload.ResultsThe efficiency in detection of myocardial ischemia was higher for HR-BSPM than for standard 12-lead electrocardiography (ECG) when both methods were evaluated by outcomes of coronarography. The sensitivity of HR-BSPM was 82.4% while for the standard 12-lead ECG exercise stress test it was 58.8%. For some patients significant changes in the ST segment were observed at stress HR-BSPM but were not visible in standard 12-lead ECG recorded under the same conditions.ConclusionsObtained high values of sensitivity and specificity in myocardial ischemia detection suggest that maps of ST60 calculated from HR-BSPM can improve detection of patients with ischemic heart disease in comparison to the standard electrocardiographic exercise stress test examinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.