Our study investigated the physiological and biochemical basis for the effects of exogenous phenolic acids on the function of the photosynthetic apparatus and photosynthetic electron transport rate in strawberry seedlings. Potted seedlings of the strawberry (Fragaria × ananassa Duch.) were used. Syringic acid inhibited net photosynthetic rate and water-use efficiency decreased. Additionally, primary quinone electron acceptor of the PSII reaction centre, the PSII reaction centre and the oxygen evolving complex were also impaired. Both the maximum quantum yield of the PSII primary photochemistry and the performance index on absorption basis were depressed, resulting in reduced function of the photosynthetic electron transport chain. Otherwise, low phthalic acid concentrations enhanced photosynthetic capacity, while high concentrations showed opposite effects. Syringic acid exhibited a higher toxic effect than that of phthalic acid which was more evident at higher concentrations.
Aflatoxins, produced by Aspergillus flavus and Aspergillus parasiticus, are the most toxic fungal secondary metabolites that contaminate agricultural commodities such as peanuts, cotton and maize. Understanding the underlying mechanisms of crop resistance to fungal infection is an important step for plant breeders to develop better and improved crop varieties for safe production of human food and animal feed. Infection studies have identified a resistant (R) peanut line, GT-C20, which is able to decrease aflatoxin contamination. The mycelial growth of A. flavus NRRL3357 on the R peanut line was much lower than that on the susceptible (S) peanut line, Tifrunner. Besides reducing fungal growth, the R line compared to the S line inhibited aflatoxin production completely. Real-time RT-PCR assays of both the R and S lines infected by A. flavus showed that expression of five aflatoxin biosynthetic pathway genes, the aflR regulatory gene and the aflD, aflM, aflP and aflQ structural genes, was not reduced but was significantly delayed on the R line. The results suggested that resistance factors of the R line acted negatively on A. flavus growth and also altered fungal development. The dysfunction in development changed the timing and the pattern of aflatoxin gene expression, which in part rendered A. flavus unable to produce aflatoxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.