For survival, it is crucial for eating behaviours to be sequenced through two distinct seeking and consummatory phases. Heterogeneous lateral hypothalamus (LH) neurons are known to regulate motivated behaviours, yet which subpopulation drives food seeking and consummatory behaviours have not been fully addressed. Here, in male mice, fibre photometry recordings demonstrated that LH leptin receptor (LepR) neurons are correlated explicitly in both voluntary seeking and consummatory behaviours. Further, micro-endoscope recording of the LHLepR neurons demonstrated that one subpopulation is time-locked to seeking behaviours and the other subpopulation time-locked to consummatory behaviours. Seeking or consummatory phase specific paradigm revealed that activation of LHLepR neurons promotes seeking or consummatory behaviours and inhibition of LHLepR neurons reduces consummatory behaviours. The activity of LHLepR neurons was increased via Neuropeptide Y (NPY) which acted as a tonic permissive gate signal. Our results identify neural populations that mediate seeking and consummatory behaviours and may lead to therapeutic targets for maladaptive food seeking and consummatory behaviours.
Objectives To identify optimum sample conditions for human brains, we compared the clearing efficiency, antibody staining efficiency, and artifacts between fresh and cadaver samples. Methods Fresh and cadaver samples were cleared using X-CLARITY™. Clearing efficiency and artifact levels were calculated using ImageJ, and antibody staining efficiency was evaluated after confocal microscopy imaging. Three staining methods were compared: 4-day staining (4DS), 11-day staining (11DS), and 4-day staining with a commercial kit (4DS-C). The optimum staining method was then selected by evaluating staining time, depth, method complexity, contamination, and cost. Results Fresh samples outperformed cadaver samples in terms of the time and quality of clearing, artifacts, and 4′,6-diamidino-2-phenylindole (DAPI) staining efficiency, but had a glial fibrillary acidic protein (GFAP) staining efficiency that was similar to that of cadaver samples. The penetration depth and DAPI staining improved in fresh samples as the incubation period lengthened. 4DS-C was the best method, with the deepest penetration. Human brain images containing blood vessels, cell nuclei, and astrocytes were visualized three-dimensionally. The chemical dye staining depth reached 800 µm and immunostaining depth exceeded 200 µm in 4 days. Conclusions We present optimized sample preparation and staining protocols for the visualization of three-dimensional macrostructure in the human brain.
Agouti-related protein (AgRP) has been believed to be the main driver of feeding behaviors ever since its discovery. However, recent studies using fiber photometry and optogenetics proved that feeding behaviors are not directly driven by AgRP neurons (temporal discrepancy between neuronal activity and behavior). To resolve this paradox, we conducted novel multi-phase feeding experiments to scrutinize the dynamics of AgRP. Fiber photometry study showed that AgRP neurons start to deactivate even before the initiation of the food search phase. Using optogenetics, we could prove that the feeding behavior induced by AgRP neuron activation had substantial temporal delay and the feeding behavior was sustained for substantial time even after cessation of optogenetic activation. These results indicate that AgRP neurons are not the direct driver of feeding behavior and another downstream neuron is the driver of feeding behavior. Leptin receptor (LepR) neurons in the lateral hypothalamus (LH). LH LepR neurons were activated before voluntary food search behavior initiation and showed robust increase after food approach behavior. Artificial activation of LH LepR neurons drives food search and food approach behavior. In accordance, chemogenetic activation of LepR neurons increased food search and food approach behaviors. Lastly, slice calcium imaging results showed the possibility that NPY from the AgRP neurons could be the downstream neuromodulator of AgRP neuron, driving LH LepR neuron activation. Overall, our study shows that AgRP neurons are not the direct drivers of feeding behavior, whereas LH LepR neurons directly drive sustained food seeking behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.