For a finite group G, let ψ(G) denote the sum of element orders of G. It is known that the maximum value of ψ on the set of groups of order n, where n is a positive integer, will occur at the cyclic group Cn. In this paper, we investigate the minimum value of ψ on the set of groups of the same order.
Endowing differentiable functions from a compact manifold to a Lie group with the pointwise group operations one obtains the so-called current groups and, as a special case, loop groups. These are prime examples of infinite-dimensional Lie groups modelled on locally convex spaces. In the present paper, we generalise this construction and show that differentiable mappings on a compact manifold (possibly with boundary) with values in a Lie groupoid form infinite-dimensional Lie groupoids which we call current groupoids. We then study basic differential geometry and Lie theory for these Lie groupoids of mappings. In particular, we show that certain Lie groupoid properties, like being a proper étale Lie groupoid, are inherited by the current groupoid. Furthermore, we identify the Lie algebroid of a current groupoid as a current algebroid (analogous to the current Lie algebra associated to a current Lie group). To establish these results, we study superposition operators C (K, f) : C (K, M) → C (K, N) , γ → f • γ between manifolds of C-functions. Under natural hypotheses, C (K, f) turns out to be a submersion (an immersion, an embedding, proper, resp., a local diffeomorphism) if so is the underlying map f : M → N. These results are new in their generality and of independent interest.
In this article we investigate a monoid of smooth mappings on the space of arrows of a Lie groupoid and its group of units. The group of units turns out to be an infinite-dimensional Lie group which is regular in the sense of Milnor. Furthermore, this group is closely connected to the group of bisections of the Lie groupoid. Under suitable conditions, i.e. the source map of the Lie groupoid is proper, one also obtains a differentiable structure on the monoid and can identify the bisection group as a Lie subgroup of its group of units. Finally, relations between the (sub-)groupoids associated to the underlying Lie groupoid and subgroups of the monoid are obtained.The key tool driving the investigation is a generalisation of a result by A. Stacey which we establish in the present article. This result, called the Stacey-Roberts Lemma, asserts that pushforwards of submersions yield submersions between the infinite-dimensional manifolds of mappings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.