Mappings of the earth surface and their representation in 3D (three-dimensional) models are commonly used in most recent research. Modeling research, which starts with classical surveying methods, acquires new dimensions matching the modern technologies. 3D models of any object or earth surface can be used in much visual and scientific research. A digital model of the landscape is an important part within creation of geo-information systems used in the public administration and in the commercial sphere. It is an important tool in applications such as geomorphology, hydrology, geology, cartography, ecology, mining etc.Values of volume in terrains that do not have regular geometric structure can be obtained more accurately by using 3D models of surfaces with respect to developing technology. Basic data of 3D models must indicate 3D coordinates of the surveyed object in the reference frame. Distribution and intensity of points are important factors in modeling earth surfaces. A minimum number of points is desired in defining an object in 3D. Interpolation methods employing different mathematical models are used to obtain 3D models of terrain surfaces. In this study, the effect of interpolation methods in defining a terrain surface is investigated. For this purpose, a uniform surface, hill-shaped artificial object with a known volume is employed. The 3D surface and volume are calculated by using 12 different interpolation methods. Point distribution, point intensity and accuracy of point measurements are not considered. The same data set was used for all the interpolation methods. The interpolation methods are compared and evaluated based on the results.Minimum curvature interpolation was used by Briggs (1974) to interpolate gravity values on the corners of a regular grid using scattered gravity data and finally to produce a contour map. The theory of minimum curvature interpolation, which is a gridding method, is based on minimization of the total curvature at the grid points. The total square curvature of a surface is defined as
C z z xThe effect of interpolation methods in surface definition: an experimental study 1351
Abstract:The Earth's water resources are endangered by inconsiderate use, pollution and lack of conservation measures. Temporal monitoring is necessary for the conservation and usage planning of water resources and to make informed decisions. Seyfe Lake and its environs in Turkey is one of the most important water basins in the world, because it is a node on bird migration paths between Europe, Asia and Africa. For this reason, the International Council of Bird Preservation (ICBP) has registered 27 of the bird species living at Seyfe Lake on the conservation list. In this work, the temporal changes in the water surface area of Seyfe Lake and its environs, which are important for ecological, historical and tourism reasons, are investigated. The change of water surface in the lake is examined over a 26 year period using satellite images taken between 1975 . Landsat images from years 1975 , 1987 are used. The change is tracked from the images using an unsupervised classification method. A decrease of slightly more than 33% was observed in the water surface area this 26 year period. The temporal change indicated by the images was compared with the related meteorological data between 1975 and 2001. Over this time period, climate conditions (rainfall, temperature and evaporation) in the study area have been changed by approximately 21%. These changes could have affected the Lake surface area, but so also could external human interference around the Lake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.