Individually, advances in microelectronics and biology transformed the way we live our lives. However, there remain few examples in which biology and electronics have been interfaced to create synergistic capabilities. We believe there are two major challenges to the integration of biological components into microelectronic systems: (i) assembly of the biological components at an electrode address, and (ii) communication between the assembled biological components and the underlying electrode. Chitosan OPEN ACCESSPolymers 2015, 7 2 possesses a unique combination of properties to meet these challenges and serve as an effective bio-device interface material. For assembly, chitosan's pH-responsive film-forming properties allow it to "recognize" electrode-imposed signals and respond by self-assembling as a stable hydrogel film through a cathodic electrodeposition mechanism. A separate anodic electrodeposition mechanism was recently reported and this also allows chitosan hydrogel films to be assembled at an electrode address. Protein-based biofunctionality can be conferred to electrodeposited films through a variety of physical, chemical and biological methods. For communication, we are investigating redox-active catechol-modified chitosan films as an interface to bridge redox-based communication between biology and an electrode. Despite significant progress over the last decade, many questions still remain which warrants even deeper study of chitosan's structure, properties, and functions.
Background/Objectives:The use of electric fields in combination with small doses of antibiotics for enhanced treatment of biofilms is termed the ‘bioelectric effect’ (BE). Different mechanisms of action for the AC and DC fields have been reported in the literature over the last two decades. In this work, we conduct the first study on the correlation between the electrical energy and the treatment efficacy of the bioelectric effect on Escherichia coli K-12 W3110 biofilms.Methods:A thorough study was performed through the application of alternating (AC), direct (DC) and superimposed (SP) potentials of different amplitudes on mature E. coli biofilms. The electric fields were applied in combination with the antibiotic gentamicin (10 μg/ml) over a course of 24 h, after the biofilms had matured for 24 h. The biofilms were analysed using the crystal violet assay, the colony-forming unit method and fluorescence microscopy.Results:Results show that there is no statistical difference in treatment efficacy between the DC-, AC- and SP-based BE treatment of equivalent energies (analysis of variance (ANOVA) P>0.05) for voltages <1 V. We also demonstrate that the efficacy of the BE treatment as measured by the crystal violet staining method and colony-forming unit assay is proportional to the electrical energy applied (ANOVA P<0.05). We further verify that the treatment efficacy varies linearly with the energy of the BE treatment (r2 =0.984). Our results thus suggest that the energy of the electrical signal is the primary factor in determining the efficacy of the BE treatment, at potentials less than the media electrolysis voltage.Conclusions:Our results demonstrate that the energy of the electrical signal, and not the type of electrical signal (AC or DC or SP), is the key to determine the efficacy of the BE treatment. We anticipate that this observation will pave the way for further understanding of the mechanism of action of the BE treatment method and may open new doors to the use of electric fields in the treatment of bacterial biofilms.
Microelectronic devices that contain biological components are typically used to interrogate biology rather than control biological function. Patterned assemblies of proteins and cells have, however, been used for in vitro metabolic engineering, where coordinated biochemical pathways allow cell metabolism to be characterized and potentially controlled on a chip. Such devices form part of technologies that attempt to recreate animal and human physiological functions on a chip and could be used to revolutionize drug development. These ambitious goals will, however, require new biofabrication methodologies that help connect microelectronics and biological systems and yield new approaches to device assembly and communication. Here, we report the electrically mediated assembly, interrogation and control of a multi-domain fusion protein that produces a bacterial signalling molecule. The biological system can be electrically tuned using a natural redox molecule, and its biochemical response is shown to provide the signalling cues to drive bacterial population behaviour. We show that the biochemical output of the system correlates with the electrical input charge, which suggests that electrical inputs could be used to control complex on-chip biological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.