The definition of gastrointestinal involvement in post-acute COVID-19 syndrome, its frequency and its pathophysiology are still not completely understood. Here, we discuss the emerging evidence supporting immunological signatures and the unique nature of the gastrointestinal tract in this syndrome.
Hepatocellular carcinoma (HCC) is a common and deadly malignancy. The disease usually develops on a background of chronic liver disease. Until recently, the most common etiology was infection with the hepatitis C virus (HCV). The advent of direct-acting antiviral (DAA) therapies has been a major breakthrough in HCV treatment. Sustained virologic response can now be achieved in almost all treated patients, even in patients with a high risk for the development of HCC, such as the elderly or those with significant fibrosis. Early reports raised concerns of a high risk for HCC occurrence after DAA therapy both in patients with previous resection of tumors and those without previous tumors. As the World Health Organization’s goals for eradication of HCV are being endorsed worldwide, the elimination of HCV seems feasible. Simultaneous to the decrease in the burden of cirrhosis from HCV, non-alcoholic fatty liver disease (NAFLD) incidence has been increasing dramatically including significant increased incidence of cirrhosis and HCC in these patients. Surprisingly, a substantial proportion of patients with NAFLD were shown to develop HCC even in the absence of cirrhosis. Furthermore, HCC treatment and potential complications are known to be influenced by liver steatosis. These changes in etiology and epidemiology of HCC suggest the beginning of a new era: The post–HCV era. Changes may eventually undermine current practices of early detection, surveillance and management of HCC. We focused on the risk of HCC occurrence and recurrence in the post–HCV era, the surveillance needed after DAA therapy and current studies in HCC patients with NAFLD.
Targeting the α4β7-MAdCAM-1 axis with vedolizumab (VDZ) is a front-line therapeutic paradigm in ulcerative colitis (UC). However, mechanism(s) of action (MOA) of VDZ remain relatively undefined. Here, we examined three distinct cohorts of patients with UC (n=83, n=60, and n=21), to determine the effect of VDZ on the mucosal and peripheral immune system. Transcriptomic studies with protein level validation were used to study drug MOA using conventional and transgenic murine models. We found a significant decrease in colonic and ileal naive B and T cells and circulating gut-homing plasmablasts (β7+) in VDZ-treated patients, pointing to gut-associated lymphoid tissue (GALT) targeting by VDZ. Murine Peyer's patches (PP) demonstrated a significant loss cellularity associated with reduction in follicular B cells, including a unique population of epithelium-associated B cells, following anti-α4β7 antibody (mAb) administration. Photoconvertible (KikGR) mice unequivocally demonstrated impaired cellular entry into PPs in anti-α4β7 mAb treated mice. In VDZ-treated, but not anti-tumor necrosis factor-treated UC patients, lymphoid aggregate size was significantly reduced in treatment responders compared to non-responders, with an independent validation cohort further confirming these data. GALT targeting represents a novel MOA of α4β7-targeted therapies, with major implications for this therapeutic paradigm in UC, and for the development of new therapeutic strategies.
Background Although respiratory failure is the hallmark of severe disease, it is increasingly clear that Coronavirus Disease 2019 (COVID-19) is a multi-system disorder. The presence of gastrointestinal (Gl) involvement by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been suggested by epidemiological, clinical, non-human primate, in-vitro (enteroid) and ex-vivo (human biopsy) studies. Having recently documented persistence of SAR-CoV-2 within the intestinal epithelium 7 months after infection, here we aimed to study mucosal immune cell abnormalities in individuals with prior history of COVID-19. Methods Individuals with previous COVID-19 diagnosis (by either RT–PCR or seroconversion) and controls (without RT-PCR or serological evidence of prior COVID-19 infection) undergoing endoscopic evaluation were recruited into the study (Table 1,2). Colonic and small intestinal (duodenal and ileal) biopsies were analyzed by multiparameter flow cytometry for mucosal immune cell populations including myeloid cells (classical and non-classical monocytes, dendritic cell subsets), T cells (subsets and activation state), B cells (including plasma cells). Persistence of viral antigens was determined by immunofluorescence microscopy (n=30) using a previously published anti-nucleocapsid (NP) antibody. Results Thirty subjects with a previous history of COVID-19 (post-COVID), median of 4 months from diagnosis (range 1–10 months), were recruited and compared with 40 normal volunteer (NV) controls. Relative to controls, post-COVID subjects displayed higher frequencies of classical (CD14+) monocytes in both, the colon and the small bowel, while significantly higher frequencies of conventional dendritic cells (cDC) 1 (lin-HLA-DRhiCD14-CD11c+CD141+) and cDC2 (lin-HLA-DRhiCD14--CD11c+CD1c+) were noted in the colon only. Among T cell subsets, CD8+ tissue resident memory T cells (CD8+CD69+CD103+) were significantly increased in colon of post-COVID subjects compared to NV. Among B cell subsets, plasma cells (CD3-CD27+CD38hi) trended higher (p=0.06), while mucosal B cells (CD3-CD19+) were significantly lower in the terminal ileum of post-COVID subjects compared to NV. Finally, with IF, we detected SARS-CoV-2 NP in 10 out of 30 (33%) of post-COVID subjects (Figure 1). There were no significant correlations of these cell populations with either time after the infection or IF positivity. Conclusion Innate and adaptive immune cell abnormalities persist in the intestinal mucosa of post-COVID subjects for up to 10 months and may reflect viral persistence or immune cell dysregulation in the intestines. These findings have major implications for understanding the pathogenesis of long term sequela of COVID-19, including long-haul COVID.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.