Genes of interest can be selectively metallized via the incorporation of modified triphosphates. These triphosphates bear functions that can be further derivatized with aldehyde groups via the use of click chemistry. Treatment of the aldehyde-labeled gene mixture with the Tollens reagent, followed by a development process, results in the selective metallization of the gene of interest in the presence of natural DNA strands.
Uniform bimetallic nanowires, tunable in size, have been grown on artificial DNA templates via a two-step metallization process. Alkyne-modified cytosines were incorporated into 900-base-pair polymerase-chain-reaction fragments. The alkyne modifications serve as addressable metal-binding sites after conversion to a sugar triazole derivative via click chemistry. Reaction of the Tollens reagent with these sugar-coated DNA duplexes generates Ag0 metallization centers around the sugar modification sites of the DNA. After a subsequent enhancement step using gold, nanowires < or = 10 nm in diameter with a homogeneous surface profile were obtained. Furthermore, the advantage of this two-step procedure lies in the high selectivity of the process, due to the exact spatial control of modified DNA base incorporation and hence the confinement of metallization centers at addressable sites. Besides experiments on a membrane as a proof for the selectivity of the method, atomic force microscopy (AFM) studies of the wires produced on Si-SiO2 surfaces are discussed. Furthermore, we demonstrate time-dependent metallization experiments, monitored by AFM.
Since their discovery, carbon nanotubes have fascinated many researchers due to their unprecedented properties. However, a major drawback in utilizing carbon nanotubes for practical applications is the difficulty in positioning or growing them at specific locations. Here we present a simple, rapid, non-invasive and scalable technique that enables optical imaging of carbon nanotubes. The carbon nanotube scaffold serves as a seed for nucleation and growth of small size, optically visible nanocrystals. After imaging the molecules can be removed completely, leaving the surface intact, and thus the carbon nanotube electrical and mechanical properties are preserved. The successful and robust optical imaging allowed us to develop a dedicated image processing algorithm through which we are able to demonstrate a fully automated circuit design resulting in field effect transistors and inverters. Moreover, we demonstrate that this imaging method allows not only to locate carbon nanotubes but also, as in the case of suspended ones, to study their dynamic mechanical motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.