Hepatocellular carcinoma (HCC) ranks third in overall global cancer-related mortality. Symptomatic presentation often means advanced disease where potentially curative treatment options become very limited. Numerous international guidelines propose the routine monitoring of those with the highest risk factors for the condition in order to diagnose potential tumourigenesis early. To aid this, the fields of metabonomic- and proteomic-based biomarker discovery have applied advanced tools to identify early changes in protein and metabolite expression in HCC patients vs controls. With robust validation, it is anticipated that from these candidates will rise a high-performance non-invasive test able to diagnose early HCC and related conditions. This review gathers the numerous markers proposed by studies using mass spectrometry and proton nuclear magnetic resonance spectroscopy and evaluates areas of consistency as well as discordance.
There is no clinically applicable biomarker for surveillance of hepatocellular carcinoma (HCC), because the sensitivity of serum alpha-fetoprotein (AFP) is too low for this purpose. Here, we determined the diagnostic performance of a panel of urinary metabolites of HCC patients from West Africa. Urine samples were collected from Nigerian and Gambian patients recruited on the case-control platform of the Prevention of Liver Fibrosis and Cancer in Africa (PROLIFICA) program. Urinary proton nuclear magnetic resonance ( 1 H-NMR) spectroscopy was used to metabolically phenotype 290 subjects: 63 with HCC; 32 with cirrhosis (Cir); 107 with noncirrhotic liver disease (DC); and 88 normal control (NC) healthy volunteers. Urine samples from a further cohort of 463 subjects (141 HCC, 56 Cir, 178 DC, and 88 NC) were analyzed, the results of which validated the initial cohort. The urinary metabotype of patients with HCC was distinct from those with Cir, DC, and NC with areas under the receiver operating characteristic ( Metabolites that were significantly increased in urine of HCC patients, and which correlated with clinical stage of HCC, were NAA, dimethylglycine, 1-methylnicotinamide, methionine, acetylcarnitine, 2-oxoglutarate, choline, and creatine. Conclusion: The urinary metabotyping of this West African cohort identified and validated a metabolite panel that diagnostically outperforms serum AFP. (HEPATOLOGY 2014;60:1291-1301
Chronic liver disease is a major cause of morbidity and mortality worldwide and usually develops over many years, as a result of chronic inflammation and scarring, resulting in end-stage liver disease and its complications. The progression of disease is characterised by ongoing inflammation and consequent fibrosis, although hepatic steatosis is increasingly being recognised as an important pathological feature of disease, rather than being simply an innocent bystander. However, the current gold standard method of quantifying and staging liver disease, histological analysis by liver biopsy, has several limitations and can have associated morbidity and even mortality. Therefore, there is a clear need for safe and non-invasive assessment modalities to determine hepatic steatosis, inflammation and fibrosis. This review covers key mechanisms and the importance of fibrosis and steatosis in the progression of liver disease. We address non-invasive imaging and blood biomarker assessments that can be used as an alternative to information gained on liver biopsy.
Hepatocellular carcinoma (HCC) is a common malignancy and now the second commonest global cause of cancer death. HCC tumorigenesis is relatively silent and patients experience late symptomatic presentation. As the option for curative treatments is limited to early stage cancers, diagnosis in non-symptomatic individuals is crucial. International guidelines advise regular surveillance of high-risk populations but the current tools lack sufficient sensitivity for early stage tumors on the background of a cirrhotic nodular liver. A number of novel biomarkers have now been suggested in the literature, which may reinforce the current surveillance methods. In addition, recent metabonomic and proteomic discoveries have established specific metabolite expressions in HCC, according to Warburg's phenomenon of altered energy metabolism. With clinical validation, a simple and non-invasive test from the serum or urine may be performed to diagnose HCC, particularly benefiting low resource regions where the burden of HCC is highest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.