Context: Software maintainability is one of the fundamental quality attributes of software engineering. The accurate prediction of software maintainability is a significant challenge for the effective management of the software maintenance process. Objective: The major aim of this paper is to present a systematic review of studies related to the prediction of maintainability of object-oriented software systems using machine learning techniques. This review identifies and investigates a number of research questions to comprehensively summarize, analyse and discuss various viewpoints concerning software maintainability measurements, metrics, datasets, evaluation measures, individual models and ensemble models. Method: The review uses the standard systematic literature review method applied to the most common computer science digital database libraries from January 1991 to July 2018. Results: We survey 56 relevant studies in 35 journals and 21 conference proceedings. The results indicate that there is relatively little activity in the area of software maintainability prediction compared with other software quality attributes. CHANGE maintenance effort and the maintainability index were the most commonly used software measurements (dependent variables) employed in the selected primary studies, and most made use of class-level product metrics as the independent variables. Several private datasets were used in the selected studies, and there is a growing demand to publish datasets publicly. Most studies focused on regression problems and performed k-fold cross-validation. Individual prediction models were employed in the majority of studies, while ensemble models relatively rarely. Conclusion: Based on the findings obtained in this systematic literature review, ensemble models demonstrated increased accuracy prediction over individual models, and have been shown to be useful models in predicting software maintainability. However, their application is relatively rare and there is a need to apply these, and other, models to an extensive variety of datasets with the aim of improving the accuracy and consistency of results.
This paper presents a comprehensive study of Convolutional Neural Networks (CNN) and transfer learning in the context of medical imaging. Medical imaging plays a critical role in the diagnosis and treatment of diseases, and CNN-based models have demonstrated significant improvements in image analysis and classification tasks. Transfer learning, which involves reusing pre-trained CNN models, has also shown promise in addressing challenges related to small datasets and limited computational resources. This paper reviews the advantages of CNN and transfer learning in medical imaging, including improved accuracy, reduced time and resource requirements, and the ability to address class imbalances. It also discusses challenges, such as the need for large and diverse datasets, and the limited interpretability of deep learning models. What factors contribute to the success of these networks? How are they fashioned, exactly? What motivated them to build the structures that they did? Finally, the paper presents current and future research directions and opportunities, including the development of specialized architectures and the exploration of new modalities and applications for medical imaging using CNN and transfer learning techniques. Overall, the paper highlights the significant potential of CNN and transfer learning in the field of medical imaging, while also acknowledging the need for continued research and development to overcome existing challenges and limitations.
Remote sensing image (RSI) scene classification has become a hot research topic due to its applicability in different domains such as object recognition, land use classification, image retrieval, and surveillance. During RSI classification process, a class label will be allocated to every scene class based on the semantic details, which is significant in real-time applications such as mineral exploration, forestry, vegetation, weather, and oceanography. Deep learning (DL) approaches, particularly the convolutional neural network (CNN), have shown enhanced outcomes on the RSI classification process owing to the significant aspect of feature learning as well as reasoning. In this aspect, this study develops fuzzy cognitive maps with a bird swarm optimization-based RSI classification (FCMBS-RSIC) model. The proposed FCMBS-RSIC technique inherits the advantages of fuzzy logic (FL) and swarms intelligence (SI) concepts. In order to transform the RSI into a compatible format, preprocessing is carried out. Besides, the features are produced by the use of the RetinaNet model. Besides, a FCM-based classifier is involved to allocate proper class labels to the RSIs and the classification performance can be improved by the design of bird swarm algorithm (BSA). The performance validation of the FCMBS-RSIC technique takes place using benchmark open access datasets, and the experimental results reported the enhanced outcomes of the FCMBS-RSIC technique over its state-of-the-art approaches.
Decision-making medical systems (DMS) refer to the design of decision techniques in the healthcare sector. They involve a procedure of employing ideas and decisions related to certain processes such as data acquisition, processing, judgment, and conclusion. Pancreatic cancer is a lethal type of cancer, and its prediction is ineffective with current techniques. Automated detection and classification of pancreatic tumors can be provided by the computer-aided diagnosis (CAD) model using radiological images such as computed tomography (CT) and magnetic resonance imaging (MRI). The recently developed machine learning (ML) and deep learning (DL) models can be utilized for the automated and timely detection of pancreatic cancer. In light of this, this article introduces an intelligent deep-learning-enabled decision-making medical system for pancreatic tumor classification (IDLDMS-PTC) using CT images. The major intention of the IDLDMS-PTC technique is to examine the CT images for the existence of pancreatic tumors. The IDLDMS-PTC model derives an emperor penguin optimizer (EPO) with multilevel thresholding (EPO-MLT) technique for pancreatic tumor segmentation. Additionally, the MobileNet model is applied as a feature extractor with optimal auto encoder (AE) for pancreatic tumor classification. In order to optimally adjust the weight and bias values of the AE technique, the multileader optimization (MLO) technique is utilized. The design of the EPO algorithm for optimal threshold selection and the MLO algorithm for parameter tuning shows the novelty. A wide range of simulations was executed on benchmark datasets, and the outcomes reported the promising performance of the IDLDMS-PTC model on the existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.