Previous studies simply focused on determining nitrous oxide (N2O) emissions from the soil under different tillage operations and nitrogen (N) fertilizations without considering crop yield. Therefore, the objective of this study was to determine the effects of different tillage operations and N fertilizations on N2O emissions and crop yield from upland soil. Two different tillage operations [conventional tillage (CT) and no-tillage (NT)] and N fertilizations [without urea (WOU) and with 186 kg N ha−1 of urea (WU)] were established in a randomized block design with three replications on upland soil. Maize (Zea mays) was cultivated from 6th July to 4th October, 2018 (year 1), and from 15th April to 26th July, 2019 (year 2). The daily N2O flux did not peak soon after tillage operation and N fertilization, but it was more related to the change in water-filled pore space (WFPS). The mean value of WFPS across N fertilizations and seasons (years) was higher in CT than in NT. The changes of nitrification and denitrification rates could be attributed to the differences in WFPS between CT and NT. Nitrification was the predominant process producing N2O with CT, but denitrification was with NT. The application of urea increased cumulative N2O emissions, while CT also increased it compared with NT. The order of the mean values of cumulative N2O emissions across seasons from the highest to the lowest was as follows: CT + WU (7.12 kg N2O ha−1 year−1) > NT + WU (5.69 kg N2O ha−1 year−1) ≥ CT + WOU (5.02 kg N2O ha−1 year−1) > NT + WOU (4.24 kg N2O ha−1 year−1). Tillage operation did not affect the grain yield of maize or yield-scaled N2O emissions (YSNE). However, the application of urea increased the grain yield of maize and decreased YSNE, implying it could reduce N2O emission per unit of maize grain production. No-tillage management did not decrease YSNE value compared to CT operation, but N fertilization significantly decreased YSNE in the current study.
BACKGROUND: Impact of incorporating hairy vetch into soil on mitigating nitrous oxide (N 2 O) emissions from maize field in South Korea has not been investigated, whereas impacts on soil properties and nutrients for crops have been investigated. Therefore, this study was conducted to examine N 2 O emission from upland soil incorporated with hairy vetch for one year in maize field. METHODS AND RESULTS: Hairy vetch was grown in an upland soil from November, 2017 to May, 2018 and incorporated into soil on May 25 of 2018. Control and conventional treatment (NPK) were included for comparison. Gas samples were collected weekly for a year to examine N 2 O emissions from the soil. Chemical nitrogen (N) fertilizer stimulated N 2 O emission in short term resulting in the greatest cumulative N 2 O emission in NPK (6.72 kg N 2 O ha -1 ) compared to the control (4.04 kg N 2 O ha -1 ) and hairy vetch-incorporated field (5.43 kg N 2 O ha -1 ), and the greatest yield of maize from NPK, because total N input was much greater by NPK (186 N kg ha -1 ) than by hairy vetch (81.6 N kg ha -1 ). CONCLUSION: Incorporation of hairy vetch reduced N 2 O emissions from the maize compared to the NPK-treated field. However, further research on improving crop productivity with incorporation of hairy vetch is needed.
In a pilot study, we observed cadmium (Cd) immobilization with citric acid (CA) and suggested that mandarin byproducts (MB), which contain CA at ca. 1.65%, can be used as soil amendments that reduce Cd bioavailability. In the present study, we (1) elucidated mechanisms of Cd immobilization by CA and (2) evaluated the use of MB as a soil amendment for Cd immobilization. In Experiment 1, CA was mixed with Cd contaminated soil at 0 and 3.5 mmol kg −1. We then added MB to Cd-spiked soil at 10, 20, and 40 g kg −1. Addition of CA decreased F2 (surface adsorbed Cd fraction) contents by 2.64 mg kg −1 compared with the control but was associated with increases in Cd fractions F1 (bioavailable Cd fraction) and F5 (residual Cd fraction) of 1.04 and 1.49 mg kg −1 , respectively. Addition of CA enhanced the concentration of fraction F5, likely reflecting Cd precipitation from soil solutions with increased HCO 3 − concentrations. However, although this treatment immobilized Cd, it also led to increasing residual and bioavailable Cd fractions. Unlike CA treatments, MB increased non-bioavailable Cd fractions without increasing the bioavailable Cd fraction. Moreover, at 40 g kg −1 , MB decreased F1 contents by 8% compared with the control, but increased F2, F3, and F5 contents by 3.6%, 0.7%, and 4.5%, respectively. Cd may be immobilized by MB through H x CO 3 − mediated precipitation as CdCO 3 following decomposition of CA and concomitant increases in the negative charge of soil due to the organic matter in MB. MB also improved the chemical properties of soils, with increased nutrient concentrations and cation exchange capacities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.