This article presents an application of the Discrete Event System Specification (DEVS) framework to the design and safety analysis of a real-time embedded control system, a railroad crossing control system. The authors employ an extension of the DEVS formalism, real-time DEVS (RT-DEVS), which has a sound semantics for the specification of real-time systems in a hierarchical modular fashion. The notion of a clock matrix for communicating RT-DEVS models is proposed, which represents a global time between the models. Based on the composition rules and the clock matrix, an algorithm for the generation of a timed reachability tree is developed that can be used for safety analysis at two phases: an untimed and timed analysis phase. A railroad crossing control example demonstrates that the proposed analysis for RT-DEVS models would be effective to verify the safety property of real-time control systems.
Modeling and simulation (M&S) has long played an important role in developing tactics and evaluating the measure of effectiveness (MOE) for the underwater warfare system. In simulation-based acquisition, M&S technology facilitates decisions about future equipment procurements, such as a mobile decoy or a torpedo. In addition, assessment of submarine tactical development, during an engagement against a torpedo, can be conducted using M&S techniques. This paper presents a case study that applies discrete event systems specification-based M&S technology to develop a simulation of an underwater warfare system, specifically, an anti-torpedo combat system, to analyze the MOE of the system. The entity models required for M&S are divided into three sub-models: controller, maneuver, and sensor model. The developed simulation allows us to conduct a statistical evaluation of the overall underwater warfare system under consideration, an assessment of the anti-torpedo countermeasure's effectiveness, and an assessment of tactics development of the underwater vehicle. Moreover, it can be utilized to support the decision-making process for future equipment procurements. In order to analyze the system effectiveness, we performed extensive combat experiments by varying parameters, such as various tactics and weapon performance. The experimental results show how the factors influence the MOEs of the underwater warfare system.
Simulation-based experiment of complex systems is a time consuming-job. Parallel and distributed simulation is one of the methods to reduce the simulation time. To simulate and analyze the system with this method, it is required to design a suitable experimental frame. Therefore, this paper proposes a MapReduce based experimental frame for the parallel and distributed simulation. Because Hadoop MapReduce is the most widely used parallel and distributed computing platform, we use it to design the experimental frame. In our work, the 'map' of MapReduce automatically generates and simulates the system, and the 'reduce' of MapReduce collects and analyzes the result. We can reuse the existing large scale Hadoop clusters without any modification of the platform, so it is easy to setup and use the experimental frame. This paper presents an air defense simulation to show the usage and speed up with a 16-node Hadoop cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.