OBJECTIVE De novo seizure following craniotomy (DSC) for nontraumatic pathology may adversely affect medical and neurological outcomes in patients with no history of seizures who have undergone craniotomies. Antiepileptic drugs (AEDs) are commonly used prophylactically in patients undergoing craniotomy; however, evidence supporting this practice is limited and mixed. The authors aimed to collate the available evidence on the efficacy and tolerability of levetiracetam monotherapy and compare it with that of the classic AED, phenytoin, for DSC. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were searched for studies that compared levetiracetam with phenytoin for DSC prevention. Inclusion criteria were adult patients with no history of epilepsy who underwent craniotomy with prophylactic usage of phenytoin, a comparator group with levetiracetam treatment as the main treatment difference between the two groups, and availability of data on the numbers of patients and seizures for each group. Patients with brain injury and previous seizure history were excluded. DSC occurrence and adverse drug reaction (ADR) were evaluated. Seizure occurrence was calculated using the Peto odds ratio (POR), which is the relative effect estimation method of choice for binary data with rare events. RESULTS Data from 7 studies involving 803 patients were included. The DSC occurrence rate was 1.26% (4/318) in the levetiracetam cohort and 6.60% (32/485) in the phenytoin cohort. Meta-analysis showed that levetiracetam is significantly superior to phenytoin for DSC prevention (POR 0.233, 95% confidence interval [CI] 0.117-0.462, p< 0.001). Subgroup analysis demonstrated that levetiracetam is superior to phenytoin for DSC due to all brain diseases (POR 0.129, 95% CI 0.039-0.423, p = 0.001) and tumor (POR 0.282, 95% CI 0.117-0.678, p = 0.005). ADRs in the levetiracetam group were cognitive disturbance, thrombophlebitis, irritability, lethargy, tiredness, and asthenia, whereas rash, anaphylaxis, arrhythmia, and hyponatremia were more common in the phenytoin group. The overall occurrence of ADR in the phenytoin (34/466) and levetiracetam (26/432) groups (p = 0.44) demonstrated no statistically significant difference in ADR occurrence. However, the discontinuation rate of AEDs due to ADR was 53/297 in the phenytoin group and 6/196 in the levetiracetam group (POR 0.266, 95% CI 0.137-0.518, p < 0.001). CONCLUSIONS Levetiracetam is superior to phenytoin for DSC prevention for nontraumatic pathology and has fewer serious ADRs that lead to discontinuation. Further high-quality studies that compare levetiracetam with placebo are necessary to provide evidence for establishing AED guidelines.
PurposeHemodynamic factors are considered to play an important role in initiation and progression of the recurrence after endosaccular coiling of the intracranial aneurysms. We made paired virtual models of completely coiled aneurysms which were subsequently recanalized and compared to identify hemodynamic characteristics related to the recurred aneurysmal sac.Materials and MethodsWe created paired virtual models of computational fluid dynamics (CFD) in five aneurysms which were initially regarded as having achieved complete occlusion and then recurred during follow-up. Paired virtual models consisted of the CFD model of 3D rotational angiography obtained in the recurred aneurysm and the control model of the initial, parent artery after artificial removal of the coiled and recanalized aneurysm. Using the CFD analysis of the virtual model, we analyzed the hemodynamic characteristics on the neck of each aneurysm before and after its recurrence.ResultsHigh wall shear stress (WSS) was identified at the cross-sectionally identified aneurysm neck at which recurrence developed in all cases. A small vortex formation with relatively low velocity in front of the neck was also identified in four cases. The aneurysm recurrence locations corresponded to the location of high WSS and/or small vortex formation.ConclusionRecanalized aneurysms revealed increased WSS and small vortex formation at the cross-sectional neck of the aneurysm. This observation may partially explain the hemodynamic causes of future recanalization after coil embolization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.