Chronic monitoring of intravesical pressure is required to detect the onset of intravesical hypertension and the progression of a more severe condition. Recent reports demonstrate the bladder state can be monitored from the spiking activity of the dorsal root ganglia or lumbosacral spinal cord. However, one of the most serious challenges for these methods is the difficulty of sustained spike signal acquisition due to the high-electrode-location-sensitivity of spikes or neuro-degeneration. Alternatively, it has been demonstrated that local field potential recordings are less affected by encapsulation reactions or electrode location changes. Here, we hypothesized that local field potential (LFP) from the lumbosacral dorsal horn may provide information concerning the intravesical pressure. LFP and spike activities were simultaneously recorded from the lumbosacral spinal cord of anesthetized rats during bladder filling. The results show that the LFP activities carry significant information about intravesical pressure along with spiking activities. Importantly, the intravesical pressure is decoded from the power in high-frequency bands (83.9-256 Hz) with a substantial performance similar to that of the spike train decoding. These findings demonstrate that high-frequency LFP activity can be an alternative intravesical pressure monitoring signal, which could lead to a proper closed loop system for urinary control.
Here, we report that the development of a brain-to-brain interface (BBI) system that enables a human user to manipulate rat movement without any previous training. In our model, the remotely-guided rats (known as ratbots) successfully navigated a T-maze via contralateral turning behaviour induced by electrical stimulation of the nigrostriatal (NS) pathway by a brain- computer interface (BCI) based on the human controller’s steady-state visually evoked potentials (SSVEPs). The system allowed human participants to manipulate rat movement with an average success rate of 82.2% and at an average rat speed of approximately 1.9 m/min. The ratbots had no directional preference, showing average success rates of 81.1% and 83.3% for the left- and right-turning task, respectively. This is the first study to demonstrate the use of NS stimulation for developing a highly stable ratbot that does not require previous training, and is the first instance of a training-free BBI for rat navigation. The results of this study will facilitate the development of borderless communication between human and untrained animals, which could not only improve the understanding of animals in humans, but also allow untrained animals to more effectively provide humans with information obtained with their superior perception.
A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.