Design of materials to be heat-conductive in a preferred direction is a crucial issue for efficient heat dissipation in systems using stacked devices. Here, we demonstrate a facile route to fabricate polymer composites with directional thermal conduction. Our method is based on control of the orientation of fillers with anisotropic heat conduction. Melt-compression of solution-cast poly(vinylidene fluoride) (PVDF) and graphene nanoflake (GNF) films in an L-shape kinked tube yielded a lightweight polymer composite with the surface normal of GNF preferentially aligned perpendicular to the melt-flow direction, giving rise to a directional thermal conductivity of approximately 10 W/mK at 25 vol % with an anisotropic thermal conduction ratio greater than six. The high directional thermal conduction was attributed to the two-dimensional planar shape of GNFs readily adaptable to the molten polymer flow, compared with highly entangled carbon nanotubes and three-dimensional graphite fillers. Furthermore, our composite with its density of approximately 1.5 g/cm(3) was mechanically stable, and its thermal performance was successfully preserved above 100 °C even after multiple heating and cooling cycles. The results indicate that the methodology using an L-shape kinked tube is a new way to achieve polymer composites with highly anisotropic thermal conduction.
To meet the growing demand for rapid heat dissipation in electronic devices to ensure their reliable performance with a high level of safety, many polymer composites with thermally conductive but electrically insulating 2D boron nitride nanosheets (BNNSs) are being developed. Here we present an efficient way to enhance the thermal conductivity (TC) of a polymer composite by means of "grafting-from" polymerization of a poly(caprolactone) (PCL) onto BNNSs. The BNNSs, which were exfoliated from bulk BN by means of ultra-sonication, were prepared by means of radical oxidation. These oxidized BNNSs (oxi-BNNSs) were employed as initiators for subsequent ring-opening polymerization of PCL, which successfully resulted in PCL chemically grafted onto BNNSs (PCL-g-BNNSs). The excellent dispersion of PCL-g-BNNSs in common solvents allowed us to readily fabricate a polymer composite that contained PCL-g-BNNSs embedded in a PCL matrix, and the composite showed TC values that were five and nine times greater in the out-of-plane and in-plane mode, respectively, than those of pristine PCL.
The development of polymer-filled composites with an extremely high thermal conductivity (TC) that is competitive with conventional metals is in great demand due to their cost-effective process, light weight, and easy shape-forming capability. A novel polymer composite with a large thermal conductivity of 153 W m(-1) K(-1) was prepared based on self-assembled block copolymer micelles containing two different fillers of micron-sized silver particles and multi-walled carbon nanotubes. Simple mechanical mixing of the components followed by conventional thermal compression at a low processing temperature of 160 °C produced a novel composite with both structural and thermal stability that is durable for high temperature operation up to 150 °C as well as multiple heating and cooling cycles of ΔT = 100 °C. The high performance in thermal conduction of our composite was mainly attributed to the facile deformation of Ag particles during the mixing in a viscous thermoplastic medium, combined with networked carbon nanotubes uniformly dispersed in the nanoscale structural matrix of block copolymer micelles responsible for its high temperature mechanical stability. Furthermore, micro-imprinting on the composite allowed for topographically periodic surface micropatterns, which offers broader suitability for numerous micro-opto-electronic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.