The current 15-month coronavirus disease-19 (COVID-19) pandemic caused by SARS-CoV-2 has accounted for 3.77 million deaths and enormous worldwide social and economic losses. A high volume of vaccine production is urgently required to eliminate COVID-19. Inexpensive and robust production platforms will improve the distribution of vaccines to resource-limited countries. Plant species offer such platforms, particularly through the production of recombinant proteins to serve as immunogens. To achieve this goal, here we expressed the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein in the glycoengineered-tobacco plant Nicotiana benthamiana to provide a candidate subunit vaccine. This recombinant RBD elicited humoral immunity in mice via induction of highly neutralizing antibodies. These findings provide a strong foundation to further advance the development of plant-expressed RBD antigens for use as an effective, safe, and inexpensive SARS-CoV-2 vaccine. Moreover, our study further highlights the utility of plant species for vaccine development.
Wireless power transfer systems are increasingly used as a means of charging implantable medical devices. However, the heat or thermal radiation from the wireless power transfer system can be harmful to biological tissue. In this research, we designed and implemented a wireless power transfer system-based implantable medical device with low thermal radiation, achieving 44.5% coil-to-coil efficiency. To suppress thermal radiation from the transmitting coil during charging, we minimized the ESR value of the transmitting coil. To increase power transfer efficiency, a ferrite film was applied on the receiving part. Based on analyses, we fabricated a cardiac monitoring system with dimensions of 17 × 24 × 8 mm 3 and implanted it in a rat. We confirmed that the temperature of the wireless charging device increased by only 2 • C during the 70 min charging, which makes it safe enough to use as an implantable medical device charging system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.