Due to growing interest in health and sustainability, the demand for replacing animal-based ingredients with more sustainable alternatives has increased. Many studies have been conducted on plant-based meat, but only a few have investigated the effect of adding a suitable binder to plant-based meat to enhance meat texture. Thus, this study investigated the effects of the addition of transglutaminase (TG) and glucono-δ-lactone (GdL) on the physicochemical, textural, and sensory characteristics of plant-based ground meat products. The addition of a high quantity of GdL(G10T0) had an effect on the decrease in lightness (L* 58.98) and the increase in redness (a* 3.62). TG and GdL also decreased in terms of cooking loss (CL) and water holding capacity (WHC) of PBMPs. G5T5 showed the lowest CL (3.8%), while G3T7 showed the lowest WHC (86.02%). The mechanical properties also confirmed that G3T7-added patties have significantly high hardness (25.49 N), springiness (3.7 mm), gumminess (15.99 N), and chewiness (57.76 mJ). The improved textural properties can compensate for the chewability of PBMPs. Although the overall preference for improved hardness was not high compared to the control in the sensory test, these results provide a new direction for improving the textural properties of plant-based meat by using binders and forming fibrous structures.
This study aimed to evaluate the effect of pork backfat replacement using a canola oil emulsion and emulsion beads on pork patty's physicochemical and sensory properties. Formulations of partially fat replacements were processed: control (C), canola oil (O), canola oil, water, and emulsifier (EC), emulsion (E), low-fat (LF), hydrogel bead (BC), emulsion bead (EB). Compared with the C, the hardness, springiness, gumminess, and chewiness showed significantly reduced in all samples (p<0.05). The bead-treated group showed the lowest shrinkage value (p<0.05) and was similar to the appearance of the C. Moreover, the bead-treated group showed significantly reduced cooking loss and increased water holding capacity than the C (p<0.05). These results were affected at sensorial preference, and the emulsion bead-added patty scored high in tenderness, juiciness, and overall acceptability. In conclusion, the fat replacement with plant-based fat beads showed feasibility for low-fat technology application in meat products.
This study determined the effects of physicochemical and microbial properties of emulsion as a fat replacer in meat analogs during freezing storage. Meat analogs were prepared with different fat replacers: vegetable oil (O) for control, oil in water emulsion (E), and non-emulsified oil in water emulsion (EC) for emulsion control. After that, meat analogs were stored for 0.5, one, three, and six months at −18 °C and −60 °C. The results showed that the drip loss of all samples was not significantly different (p > 0.05). However, the liquid holding capacity of EC and E was significantly higher than that of O (p < 0.05). Additionally, the microstructures of meat analogs of E and EC were smaller with denser pore sizes than O. This explains the significantly lower hardness of E and EC compared to O (p < 0.05). Overall, E showed superior physiochemical and sensory quality. During the storage, the stability of chemical properties, such as volatile basic nitrogen and thiobarbituric acid reactive substances, showed no significant changes (p > 0.05). Moreover, the microbial studies (total viable counts and Escherichia coli count) suggested that meat analogs did not deteriorate during the preparation and storage. Thus, this study suggests that emulsion-type fat replacers influence meat analogs’ physicochemical and sensorial properties. However, these properties are not influenced by the storage temperature and duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.