Capacitated Vehicle Routing Problem (CVRP) is a type of NP-Hard combinatorial problem that requires a high computational process. In the case of CVRP, there is an additional constraint in the form of a capacity limit owned by the vehicle, so the complexity of the problem from CVRP is to find the optimum route pattern for minimizing travel costs which are also adjusted to customer demand and vehicle capacity for distribution. One method of solving CVRP can be done by implementing a meta-heuristic algorithm. In this research, two meta-heuristic algorithms have been hybridized: Artificial Bee Colony (ABC) with Improved Simulated Annealing (SA). The motivation behind this idea is to complete the excess and the lack of two algorithms when exploring and exploiting the optimal solution. Hybridization is done by running the ABC algorithm, and then the output solution at this stage will be used as an initial solution for the Improved SA method. Parameter testing for both methods has been carried out to produce an optimal solution. In this study, the test was carried out using the CVRP benchmark dataset generated by Augerat (Dataset 1) and the recent CVRP dataset from Uchoa (Dataset 2). The result shows that hybridizing the ABC algorithm and Improved SA could provide a better solution than the basic ABC without hybridization.
Seiring berkembangnya teknologi informasi pada revolusi industri 4.0 diperlukan teknik implementasi Data Mining untuk menggali pengetahuan pada data untuk dapat dimanfaatkan sebaik-baiknya. Pengenalan implementasi Data Mining pada siswa SMK khususnya pada jurusan Rekayasa Perangkat Lunak (RPL) sangat penting untuk dilakukan untuk membekali siswa tentang implementasi Data Mining pada proses perancangan Aplikasi. Berdasarkan hasil wawancara yang dilakukan oleh tim Pengabdian Kepada Masyarakat (PKM) Program Studi Teknik Informatika Universitas Muhammadiyah Gresik dengan pihak SMK Dharma Wanita Gresik khususnya di kelas XII jurusan Rekayasa Perangkat Lunak diketahui bahwa siswa belum pernah diberikan pembekalan ilmu mengenai implementasi Data Mining. Sehingga kegiatan peningkatan pemahaman implementasi Data Mining pada siswa SMK Dharma Wanita Gresik khususnya pada Jurusan Rekayasa Perangkat Lunak dilakukan dengan cara melakukan sosialisasi ilmu Data Mining disertai dengan pelatihan mengenai penggunaan salah satu tools Data Mining yaitu Rapid Miner. Adapun hasil yang tercapai dari kegiatan PKM ini adalah adanya peningkatan pemahaman dan kemampuan siswa SMK Dharma Wanita Gresik jurusan Rekayasa Perangkat Lunak mengenai Data Mining dan teknik implementasinya pada data nyata yang diukur menggunakan post test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.