Personalized services have greater impact on user experience to effect the level of user satisfaction. Many approaches provide personalized services in the form of an adaptive user interface. The focus of these approaches is limited to specific domains rather than a generalized approach applicable to every domain. In this paper, we proposed a domain and device-independent model-based adaptive user interfacing methodology. Unlike state-of-the-art approaches, the proposed methodology is dependent on the evaluation of user context and user experience (UX). The proposed methodology is implemented as an adaptive UI/UX authoring (A-UI/UX-A) tool; a system capable of adapting user interface based on the utilization of contextual factors, such as user disabilities, environmental factors (e.g. light level, noise level, and location) and device use, at runtime using the adaptation rules devised for rendering the adapted interface. To validate effectiveness of the proposed A-UI/UX-A tool and methodology, user-centric and statistical evaluation methods are used. The results show that the proposed methodology B Sungyoung Lee
The significance of social media has already been proven in provoking transformation of public opinion for developed countries in improving democratic process of elections. On the contrary, developing countries lacking basic necessities of life possess monopolistic electoral system in which candidates are elected based on tribes, family backgrounds, or landlord influences. They extort voters to cast votes against their promises for the provision of basic needs. Similarly voters also poll votes for personal interests being unaware of party manifesto or national interest. These issues can be addressed by social media, resulting as ongoing process of improvement for presently adopted electoral procedures. People of Pakistan utilized social media to garner support and campaign for political parties in General Elections 2013. Political leaders, parties, and people of Pakistan disseminated party's agenda and advocacy of party's ideology on Twitter without much campaigning cost. To study effectiveness of social media inferred from individual's political behavior, large scale analysis, sentiment detection & tweet classification was done in order to classify, predict and forecast election results. The experimental results depicts that social media content can be used as an effective indicator for capturing political behaviors of different parties Positive, negative and neutral behavior of the party followers as well as party's campaign impact can be predicted from the analysis. The analytical findings proved to be having considerable correspondence with actual results as published by Election Commission of Pakistan..
Recently, social media have been used by researchers to detect depressive symptoms in individuals using linguistic data from users’ posts. In this study, we propose a framework to identify social information as a significant predictor of depression. Using the proposed framework, we develop an application called the Socially Mediated Patient Portal (SMPP), which detects depression-related markers in Facebook users by applying a data-driven approach with machine learning classification techniques. We examined a data set of 4350 users who were evaluated for depression using the Center for Epidemiological Studies Depression (CES-D) scale. From this analysis, we identified a set of features that can distinguish between individuals with and without depression. Finally, we identified the dominant features that adequately assess individuals with and without depression on social media. The model trained on these features will be helpful to physicians in diagnosing mental diseases and psychiatrists in analysing patient behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.