Recently, social media have been used by researchers to detect depressive symptoms in individuals using linguistic data from users’ posts. In this study, we propose a framework to identify social information as a significant predictor of depression. Using the proposed framework, we develop an application called the Socially Mediated Patient Portal (SMPP), which detects depression-related markers in Facebook users by applying a data-driven approach with machine learning classification techniques. We examined a data set of 4350 users who were evaluated for depression using the Center for Epidemiological Studies Depression (CES-D) scale. From this analysis, we identified a set of features that can distinguish between individuals with and without depression. Finally, we identified the dominant features that adequately assess individuals with and without depression on social media. The model trained on these features will be helpful to physicians in diagnosing mental diseases and psychiatrists in analysing patient behaviour.
Mining social network data and developing user profile from unstructured and informal data are a challenging task. The proposed research builds user profile using Twitter data which is later helpful to provide the user with personalized recommendations. Publicly available tweets are fetched and classified and sentiments expressed in tweets are extracted and normalized. This research uses domain-specific seed list to classify tweets. Semantic and syntactic analysis on tweets is performed to minimize information loss during the process of tweets classification. After precise classification and sentiment analysis, the system builds user interest-based profile by analyzing user’s post on Twitter to know about user interests. The proposed system was tested on a dataset of almost 1 million tweets and was able to classify up to 96% tweets accurately.
Chronic kidney disease (CKD) is one of the leading medical ailments in developing countries. Due to the limited healthcare infrastructure and the lack of trained human resources, the CKD problem aggravates if it is not addressed in its earlier stages. In this regard, the role of machine learning-based automated diagnosis systems plays a vital role to deal with the CKD problem. In most of the studies conducted on the automated CKD decision modeling, the main emphasis is given to enhancing the predictive accuracy of the system. In this study, we focus on the applicability challenges of automated decision systems taking CKD diagnosis as a case study within the purview of developing countries. In this regard, we propose a cost-sensitive ensemble feature ranking method that takes a more realistic approach to group-based feature selection. Two candidate solutions are proposed for group-based feature selection to meet different objectives. Subsequently, both the candidate solutions are combined into a consolidated solution. It is pertinent to note that it is one of the first studies in which cost-sensitive ensemble feature ranking for non-overlapping groups is successfully demonstrated to achieve the stated objectives i.e. low-cost and high-accuracy solution. Based on an extensive set of experiments, we demonstrate that a cost-effective and accurate solution for the CKD problem can be obtained. The experimentation includes 7 well-known classification algorithms and 8 comparative feature selection methods to show the efficacy of the proposed approach. It is concluded that the applicability of the automated CKD systems can be enhanced by including the cost consideration into the objective space of the solution formulation. Therefore, a trade-off solution can be obtained that is cost-effective and yet accurate enough to serve as a CKD screening system. INDEX TERMS Ensemble feature ranking, cost-based feature selection, threshold selection, filter methods
The lack of Interoperable healthcare data presents a major challenge, towards achieving ubiquitous health care. The plethora of diverse medical standards, rather than common standards, is widening the gap of interoperability. While many organizations are working towards a standardized solution, there is a need for an alternate strategy, which can intelligently mediate amongst a variety of medical systems, not complying with any mainstream healthcare standards while utilizing the benefits of several standard merging initiates, to eventually create digital health personas. The existence and efficiency of such a platform is dependent upon the underlying storage and processing engine, which can acquire, manage and retrieve the relevant medical data. In this paper, we present the Ubiquitous Health Profile (UHPr), a multi-dimensional data storage solution in a semi-structured data curation engine, which provides foundational support for archiving heterogeneous medical data and achieving partial data interoperability in the healthcare domain. Additionally, we present the evaluation results of this proposed platform in terms of its timeliness, accuracy, and scalability. Our results indicate that the UHPr is able to retrieve an error free comprehensive medical profile of a single patient, from a set of slightly over 116.5 million serialized medical fragments for 390,101 patients while maintaining a good scalablity ratio between amount of data and its retrieval speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.