SummaryBackgroundPost-partum haemorrhage is the leading cause of maternal death worldwide. Early administration of tranexamic acid reduces deaths due to bleeding in trauma patients. We aimed to assess the effects of early administration of tranexamic acid on death, hysterectomy, and other relevant outcomes in women with post-partum haemorrhage.MethodsIn this randomised, double-blind, placebo-controlled trial, we recruited women aged 16 years and older with a clinical diagnosis of post-partum haemorrhage after a vaginal birth or caesarean section from 193 hospitals in 21 countries. We randomly assigned women to receive either 1 g intravenous tranexamic acid or matching placebo in addition to usual care. If bleeding continued after 30 min, or stopped and restarted within 24 h of the first dose, a second dose of 1 g of tranexamic acid or placebo could be given. Patients were assigned by selection of a numbered treatment pack from a box containing eight numbered packs that were identical apart from the pack number. Participants, care givers, and those assessing outcomes were masked to allocation. We originally planned to enrol 15 000 women with a composite primary endpoint of death from all-causes or hysterectomy within 42 days of giving birth. However, during the trial it became apparent that the decision to conduct a hysterectomy was often made at the same time as randomisation. Although tranexamic acid could influence the risk of death in these cases, it could not affect the risk of hysterectomy. We therefore increased the sample size from 15 000 to 20 000 women in order to estimate the effect of tranexamic acid on the risk of death from post-partum haemorrhage. All analyses were done on an intention-to-treat basis. This trial is registered with ISRCTN76912190 (Dec 8, 2008); ClinicalTrials.gov, number NCT00872469; and PACTR201007000192283.FindingsBetween March, 2010, and April, 2016, 20 060 women were enrolled and randomly assigned to receive tranexamic acid (n=10 051) or placebo (n=10 009), of whom 10 036 and 9985, respectively, were included in the analysis. Death due to bleeding was significantly reduced in women given tranexamic acid (155 [1·5%] of 10 036 patients vs 191 [1·9%] of 9985 in the placebo group, risk ratio [RR] 0·81, 95% CI 0·65–1·00; p=0·045), especially in women given treatment within 3 h of giving birth (89 [1·2%] in the tranexamic acid group vs 127 [1·7%] in the placebo group, RR 0·69, 95% CI 0·52–0·91; p=0·008). All other causes of death did not differ significantly by group. Hysterectomy was not reduced with tranexamic acid (358 [3·6%] patients in the tranexamic acid group vs 351 [3·5%] in the placebo group, RR 1·02, 95% CI 0·88–1·07; p=0·84). The composite primary endpoint of death from all causes or hysterectomy was not reduced with tranexamic acid (534 [5·3%] deaths or hysterectomies in the tranexamic acid group vs 546 [5·5%] in the placebo group, RR 0·97, 95% CI 0·87-1·09; p=0·65). Adverse events (including thromboembolic events) did not differ significantly in the tranexamic acid versus ...
Due to the rapid development of Internet technologies and social media, sentiment analysis has become an important opinion mining technique. Recent research work has described the effectiveness of different sentiment classification techniques ranging from simple rule-based and lexicon-based approaches to more complex machine learning algorithms. While lexicon-based approaches have suffered from the lack of dictionaries and labeled data, machine learning approaches have fallen short in terms of accuracy. This paper proposes an integrated framework which bridges the gap between lexicon-based and machine learning approaches to achieve better accuracy and scalability. To solve the scalability issue that arises as the feature-set grows, a novel genetic algorithm (GA)-based feature reduction technique is proposed. By using this hybrid approach, we are able to reduce the feature-set size by up to 42% without compromising the accuracy. The comparison of our feature reduction technique with more widely used principal component analysis (PCA) and latent semantic analysis (LSA) based feature reduction techniques have shown up to 15.4% increased accuracy over PCA and up to 40.2% increased accuracy over LSA. Furthermore, we also evaluate our sentiment analysis framework on other metrics including precision, recall, F-measure, and feature size. In order to demonstrate the efficacy of GA-based designs, we also propose a novel cross-disciplinary area of geopolitics as a case study application for our sentiment analysis framework. The experiment results have shown to accurately measure public sentiments and views regarding various topics such as terrorism, global conflicts, and social issues. We envisage the applicability of our proposed work in various areas including security and surveillance, law-and-order, and public administration.
Mining social network data and developing user profile from unstructured and informal data are a challenging task. The proposed research builds user profile using Twitter data which is later helpful to provide the user with personalized recommendations. Publicly available tweets are fetched and classified and sentiments expressed in tweets are extracted and normalized. This research uses domain-specific seed list to classify tweets. Semantic and syntactic analysis on tweets is performed to minimize information loss during the process of tweets classification. After precise classification and sentiment analysis, the system builds user interest-based profile by analyzing user’s post on Twitter to know about user interests. The proposed system was tested on a dataset of almost 1 million tweets and was able to classify up to 96% tweets accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.