This article proposes an improved maximum power point tracking (MPPT) method that features a simple design, and improved efficiency in fast-changing irradiance conditions. The method uses three consecutive measurements and compares the power difference between each two consecutive samples, furthermore the voltage variation between the last two successive samples is observed. According to the obtained result of these comparisons, the algorithm applies the suitable action either increasing or decreasing the voltage. This simple concept allows easy implementation and reduces the implementation cost and calculation burden. Second, the method has a prompt tracking response during fast changes in solar irradiance (e.g., due to passing clouds). The proposed method is validated through experimental tests using solar irradiance profiles according to the EN50530 standard and is compared to the classical Perturb and Observe method. The experimental results show that the proposed MPPT effectively identifies the change in solar irradiance, and maintains high tracking efficiency even in fast-changing conditions. Index Terms-Efficiency, EN50530 standard, maximum power point tracking (MPPT), photovoltaic (PV) energy harvesting.
I. INTRODUCTIONT HE integration of photovoltaic (PV) technologies, as a main source of power plants has been one of the important subjects of research during the past few decades. However, the fundamental issue with PV technology is that its power extraction characteristic is nonlinear and its maximum power point (MPP) is highly dependent on uncontrollable environmental conditions (solar irradiation and temperature) [1]. Hence,
The photovoltaic panel is characterized by a unique point called the maximum power point (MPP) where the panel produces its maximum power. However, this point is highly influenced by the weather conditions and the fluctuation of load which drop the efficiency of the photovoltaic system. Therefore, the insertion of the maximum power point tracking (MPPT) is compulsory to track the maximum power of the panel. The approach adopted in this paper is based on combining the strengths of two maximum power point tracking techniques. As a result, an efficient maximum power point tracking method is obtained. It leads to an accurate determination of the MPP during different situations of climatic conditions and load. To validate the effectiveness of the proposed MPPT method, it has been simulated in matlab/simulink under different conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.