The enzyme paraoxonase 1 (PON1) binds to high-density lipoprotein (HDL) and is responsible for many of HDL's antiatherogenic properties. We previously showed that recombinant PON1 is inhibited by linoleic acid hydroperoxide (LA-OOH) present in the lipid fraction of the human carotid plaque (LLE) via oxidation of the enzyme's Cys284 thiol. Here we explore the effect of glabridin, an isoflavan isolated from licorice root, on preventing LA-OOH's inhibitory effect on rePON1 using the tryptophan-fluorescence-quenching technique and modeling calculations. Glabridin significantly prevented rePON1 inhibition by LLE or oxidized linoleic acid (by 22% and 15%, respectively), whereas ascorbic acid and Trolox, strong antioxidants, had no effect. Glabridin quenched the intrinsic fluorescence of rePON1 in a concentration-dependent manner. Binding parameters and modeling calculations demonstrated a major role for hydrophobic forces in the rePON1-glabridin interaction, indicating that it is not the antioxidant capacity of glabridin that protects rePON1 from LA-OOH inhibition, but rather its specific interaction with the enzyme.
Objective
Vitamin E provides cardiovascular protection to individuals with Diabetes and the haptoglobin 2-2 genotype but appears to increase cardiovascular risk in individuals with Diabetes and the haptoglobin 2-1 genotype. We have previously demonstrated that the haptoglobin protein is associated with HDL and that HDL function and its oxidative modification are haptoglobin genotype dependent. We set out to test the hypothesis that the pharmacogenetic interaction between the haptoglobin genotype on cardiovascular risk might be secondary to a parallel interaction between the haptoglobin genotype and vitamin E on HDL function.
Research design and methods
Fifty-nine individuals with Diabetes and the haptoglobin 2-1 or 2-2 genotypes were studied in a double-blind placebo controlled crossover design. Participants were treated with either vitamin E (400 IU) or placebo for 3 months and crossed over for an equivalent duration. Serum was collected at baseline and after the completion of each treatment. HDL functionality as well as HDL associated markers of oxidation and inflammation were measured after each interval in HDL purified from the cohort.
Results
Compared to placebo, vitamin E significantly increased HDL function in haptoglobin 2-2 but significantly decreased HDL function in haptoglobin 2-1. This pharmacogenetic interaction was paralleled by similar non-significant trends in HDL associated lipid peroxides, glutathione peroxidase, and inflammatory cargo.
Conclusion
There exists a pharmacogenetic interaction between the haptoglobin genotype and vitamin E on HDL function. (clinicaltrials.gov NCT01113671).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.