The presence of nanoconcentrations of persistent pharmaceuticals in treated wastewater effluent and in surface water has been frequently reported. A novel organic-inorganic hybrid sorbent based on adsorbing quarternized poly vinylpyridinium-co-styrene (QPVPcS) to montmorillonite (MMT) was designed for the removal of the anionic micropollutants. QPVPcS-clay composites were characterized by X-ray diffraction, FTIR, thermal gravimetric analysis, Zeta potential and element analysis. Based on these measurements polymer-clay micro- and nanostructures, as a function of polymer loading, were suggested. The affinity of the anionic pharmaceutical, diclofenac (DCF), to the composite was high and did not decrease dramatically with an increase of ionic strength, indicating that the interactions are not only electrostatic. The presence of humic acid (HA) did not hinder DCF removal by the composite; whereas, its filtration by granulated activated carbon (GAC) was compromised in the presence of HA. The kinetics and adsorption at equilibrium of DCF to the composite and to GAC were measured and modeled by the time dependent Langmuir equation. The adsorption of DCF to the composite was significantly faster than to GAC. Accordingly, the filtration of micro- and nanoconcentrations of DCF by composite columns, in the presence of HA, was more efficient than by GAC columns.
SUMMARYLeaf morphogenesis and differentiation are highly flexible processes. The development of compound leaves is characterized by an extended morphogenesis stage compared with that of simple leaves. The tomato mutant clausa (clau) possesses extremely elaborate compound leaves. Here we show that this elaboration is generated by further extension of the morphogenetic window, partly via the activity of ectopic meristems present on clau leaves. Further, we propose that CLAU might negatively affect expression of the NAM/CUC gene GOBLET (GOB), an important modulator of compound-leaf development, as GOB expression is elevated in clau mutants and reducing GOB expression suppresses the clau phenotype. Expression of GOB is also elevated in the compound leaf mutant lyrate (lyr), and the remarkable enhancement of the clau phenotype by lyr suggests that clau and lyr affect leaf development and GOB in different pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.