The previously unknown crystal structure of the elusive Form III of paracetamol has been solved using high quality laboratory X-ray powder diffraction (XRPD) data and state-of-the-art crystal structure prediction (CSP).
Levels of host cell proteins (HCPs) in purification intermediates and drug substances (DS) of monoclonal antibodies (mAbs) must be carefully monitored for the production of safe and efficacious biotherapeutics. During the development of mAb1, an immunoglobulin G1 product, unexpected results generated with HCP Enzyme-Linked Immunosorbent Assay (ELISA) kit triggered an investigation which led to the identification of a copurifying HCP called N-(4)-(β-acetylglucosaminyl)-Lasparaginase (AGA, EC3.5.1.26) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The risk assessment performed indicated a low immunogenicity risk for the copurifying HCP and an ad hoc stability study demonstrated no mAb glycan cleavage and thus no impact on product quality. Fractionation studies performed on polishing steps revealed that AGA was coeluted with the mAb. Very interestingly, the native digestion protocol implemented to go deeper in the MS-HCP profiling was found to be incompatible with correct AGA detection in last purification intermediate and DS, further suggesting a hitchhiking behavior of AGA. In silico surface characterization of AGA also supports this hypothesis. Finally, the combined support of HCP ELISA results and MS allowed process optimization and removal of this copurifying HCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.