Host cell proteins (HCPs) are process-related impurities that may copurify with biopharmaceutical drug products. Within this class of impurities there are some that are more problematic. These problematic HCPs can be considered high-risk and can include those that are immunogenic, biologically active, or enzymatically active with the potential to degrade either product molecules or excipients used in formulation. Some have been shown to be difficult to remove by purification. Why should the biopharmaceutical industry worry about these high-risk HCPs? What approach could be taken to understand the origin of its copurification and address these *Marisa Jones and Nisha Palackal should be considered joint first authors About Biophorum Development Group (BPDG): Since its inception in 2004, BioPhorum has become a trusted environment in which senior leaders of the biopharmaceutical industry come together to share and discuss openly the emerging trends and challenges facing their industry.BioPhorum currently comprises more than 3800 active participants in seven "phorums" covering cell and gene therapy, drug substance, development, fill-finish, a technology roadmap, information technology, and supply partners. The Host Cell Protein (HCP) Workstream is part of the Development Group (BPDG). This article is a composite view of opinions shared by the whole of the BPDG-HCP Workstream and should not be attributed to the individual positions of the participating companies.
Photodynamic therapy (PDT) is an established palliative treatment for perihilar cholangiocarcinoma that is clinically promising. However, tumors tend to regrow after PDT, which may result from the PDT-induced activation of survival pathways in sublethally afflicted tumor cells. In this study, tumor-comprising cells (i.e., vascular endothelial cells, macrophages, perihilar cholangiocarcinoma cells, and EGFR-overexpressing epidermoid cancer cells) were treated with the photosensitizer zinc phthalocyanine that was encapsulated in cationic liposomes (ZPCLs). The post-PDT survival pathways and metabolism were studied following sublethal (LC50) and supralethal (LC90) PDT. Sublethal PDT induced survival signaling in perihilar cholangiocarcinoma (SK-ChA-1) cells via mainly HIF-1-, NF-кB-, AP-1-, and heat shock factor (HSF)-mediated pathways. In contrast, supralethal PDT damage was associated with a dampened survival response. PDT-subjected SK-ChA-1 cells downregulated proteins associated with EGFR signaling, particularly at LC90. PDT also affected various components of glycolysis and the tricarboxylic acid cycle as well as metabolites involved in redox signaling. In conclusion, sublethal PDT activates multiple pathways in tumor-associated cell types that transcriptionally regulate cell survival, proliferation, energy metabolism, detoxification, inflammation/angiogenesis, and metastasis. Accordingly, tumor cells sublethally afflicted by PDT are a major therapeutic culprit. Our multi-omic analysis further unveiled multiple druggable targets for pharmacological co-intervention.Electronic supplementary materialThe online version of this article (doi:10.1007/s00018-016-2401-0) contains supplementary material, which is available to authorized users.
Levels of host cell proteins (HCPs) in purification intermediates and drug substances (DS) of monoclonal antibodies (mAbs) must be carefully monitored for the production of safe and efficacious biotherapeutics. During the development of mAb1, an immunoglobulin G1 product, unexpected results generated with HCP Enzyme-Linked Immunosorbent Assay (ELISA) kit triggered an investigation which led to the identification of a copurifying HCP called N-(4)-(β-acetylglucosaminyl)-Lasparaginase (AGA, EC3.5.1.26) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The risk assessment performed indicated a low immunogenicity risk for the copurifying HCP and an ad hoc stability study demonstrated no mAb glycan cleavage and thus no impact on product quality. Fractionation studies performed on polishing steps revealed that AGA was coeluted with the mAb. Very interestingly, the native digestion protocol implemented to go deeper in the MS-HCP profiling was found to be incompatible with correct AGA detection in last purification intermediate and DS, further suggesting a hitchhiking behavior of AGA. In silico surface characterization of AGA also supports this hypothesis. Finally, the combined support of HCP ELISA results and MS allowed process optimization and removal of this copurifying HCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.