Polyetheretherketone (PEEK) is a thermoplastic material widely used in engineering applications due to its good biomechanical properties and high temperature stability. Compared to traditional metal and ceramic dental materials, PEEK dental implants exhibit less stress shielding, thus better matching the mechanical properties of bone. As a promising medical material, PEEK can be used as implant abutments, removable and fixed prostheses, and maxillofacial prostheses. It can be blended with materials such as fibers and ceramics to improve its mechanical strength for better clinical dental applications. Compared to conventional pressed and CAD/CAM milling fabrication, 3D-printed PEEK exhibits excellent flexural and tensile strength and parameters such as printing temperature and speed can affect its mechanical properties. However, the bioinert nature of PEEK can make adhesive bonding difficult. The bond strength can be improved by roughening or introducing functional groups on the PEEK surface by sandblasting, acid etching, plasma treatment, laser treatment, and adhesive systems. This paper provides a comprehensive overview of the research progress on the mechanical properties of PEEK for dental applications in the context of specific applications, composites, and their preparation processes. In addition, the research on the adhesive properties of PEEK over the past few years is highlighted. Thus, this review aims to build a conceptual and practical toolkit for the study of the mechanical and adhesive properties of PEEK materials. More importantly, it provides a rationale and a general new basis for the application of PEEK in the dental field.
The aim of the present study was to investigate the effects of the transcription factor forkhead box P3 (FOXP3) in neutrophils on the progression of oral squamous cell carcinoma (OSCC). Cancer tissue samples and paracarcinoma tissues were collected from 23 patients with OSCC for the current study. In addition, SCC-9, a human tongue carcinoma cell line, was co-cultured with primary human neutrophils and treated with recombinant interleukin 8 (IL-8). The effect of FOXP3 on the proliferation of SCC-9 cells was analyzed using a Cell Counting Kit 8 assay. FOXP3 expression in neutrophils was analyzed by quantitative PCR following IL-8 treatment. FOXP3 protein expression in neutrophils and the amount of IL-8 protein in the OSCC tumor microenvironment were determined by immunofluorescence analysis. The present study demonstrated that IL-8 downregulated FOXP3 mRNA expression in neutrophils. Neutrophils and peptide P60, a specific inhibitor of FOXP3, increased proliferation of SCC-9 cells. In patients with OSCC, FOXP3 protein expression in neutrophils of the stage IV group was significantly lower compared with that of the stage II and stage III groups, while IL-8 protein expression was higher in cancer tissues compared with that in paracarcinoma tissues. In summary, IL-8 in the tumor microenvironment may recruit neutrophils, and downregulation of FOXP3 in neutrophils by IL-8 may promote the progression of OSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.