We develop an approach to understanding long chaotic transients in networks of excitatory pulse-coupled oscillators. Our idea is to identify a class of attractors, sequentially active firing (SAF) attractors, in terms of the temporal event structure of firing and receipt of pulses. Then all attractors can be classified into two groups: SAF attractors and non-SAF attractors. We establish that long transients typically arise in the transitional region of the parameter space where the SAF attractors are collectively destabilized. Bifurcation behavior of the SAF attractors is analyzed to provide a detailed understanding of the long irregular transients. Although demonstrated using pulse-coupled oscillator networks, our general methodology may be useful in understanding the origin of transient chaos in other types of networked systems, an extremely challenging problem in nonlinear dynamics and complex systems.
Switching dynamics among saddles in a network of nonlinear oscillators can be exploited for information encoding and processing (hence computing), but stable attractors in the system can terminate the switching behavior. An effective control strategy is presented to sustain switching dynamics in networks of pulse-coupled oscillators. The support for the switching behavior is a set of saddles, or unstable invariant sets in the phase space. We thus identify saddles with a common property, localize the system in the vicinity of them, and then guide the system from one metastable state to another to generate desired switching dynamics. We demonstrate that the control method successfully generates persistent switching trajectories and prevents the system from entering stable attractors. In addition, there exists correspondence between the network structure and the switching dynamics, providing fundamental insights on the development of a computing paradigm based on the switching dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.