a b s t r a c tAnalytical predictions are presented for the plastic collapse strength of lightweight sandwich beams having pin-reinforced foam cores that are loaded in 3-point bending. Both polymer and aluminum foam cores are considered, whilst the facesheet and the pins are made of either composite or metal. Four different failure modes are account for: metal facesheet yield or composite facesheet microbuckling, facesheet wrinkling, plastic shear of the core, and facesheet indentation beneath the loading rollers. A micromechanics-based model is developed and combined with the homogenization approach to calculate the effective properties of pin-reinforced foam cores. To calculate the elastic buckling strength of pin reinforcements, the pin-reinforced foam core is treated as assemblies of simply supported columns resting upon an elastic foundation. Minimum mass design of the sandwich is then obtained as a function of the prescribed structural load index, subjected to the constraint that none of the above failure modes occurs. Collapse mechanism maps are constructed and compared with the failure maps of foam-cored sandwich beams without pin reinforcements. Finite element simulations are carried out to verify the analytical model and to study the performance and failure mechanisms of the sandwich subject to loading types other than 3-point bending. The results demonstrate that the weaker the foam is, the more optimal the pin-reinforced foam core becomes, and that sandwich beams with pin-reinforced polymer foam cores are structurally more efficient than foam-or trusscored sandwich beams.
Switching dynamics among saddles in a network of nonlinear oscillators can be exploited for information encoding and processing (hence computing), but stable attractors in the system can terminate the switching behavior. An effective control strategy is presented to sustain switching dynamics in networks of pulse-coupled oscillators. The support for the switching behavior is a set of saddles, or unstable invariant sets in the phase space. We thus identify saddles with a common property, localize the system in the vicinity of them, and then guide the system from one metastable state to another to generate desired switching dynamics. We demonstrate that the control method successfully generates persistent switching trajectories and prevents the system from entering stable attractors. In addition, there exists correspondence between the network structure and the switching dynamics, providing fundamental insights on the development of a computing paradigm based on the switching dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.