Handwriting character recognition is an important research topic which has various applications in surveillance, radar, robot technology... In this paper, we propose the implementation of the handwriting character recognition using off-line handwriting recognition. The approach consists of two steps: to make thin handwriting by keeping the skeleton of character and reject redundant points caused by humam’s stroke width and to modify direction method which provide high accuracy and simply structure analysis method to extract character’s features from its skeleton. In addition, we build neural network in order to help machine learn character specific features and create knowledge databases to help them have ability to classify character with other characters. The recognition accuracy of above 84% is reported on characters from real samples. Using this off-line system and other parts in handwriting text recognition, we can replace or cooperate with online recognition techniques which are ususally applied on mobile devices and extend our handwriting recognition technique on any surfaces such as papers, boards, and vehicle lisences as well as provide the reading ability for humanoid robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.