We have used the reverse transcriptase-polymerase chain reaction technique to gain insight into the pathogenesis of encephalitis caused by Borna disease virus (BDV). RNA specific for BDV was first detected in the olfactory bulb of intranasally infected rats at 6 days postinfection (p.i.). At 14 days p.i., high levels of BDV RNA were found in all brain regions, and at 26 days p.i., BDV-specific RNA was also present in the eye, nasal mucosa, and facial skin. In the chronic phase of the disease, BDV RNA was identffied in many peripheral organs but not in blood. Analysis of brain tissue for the presence of cytokine mRNAs revealed that the mRNA levels of interleukin-6 (IL-6), tumor necrosis factor alpha, and IL-lao had increased sharply at 14 and 26 days p.i. These cytokine mRNAs reached maximum levels at the peak of inflammatory reactions and decreased drastically in the chronic phase of the disease. Although IL-2 mRNA was also found in normal brain, it was markedly increased in BDV-infected brain at 14 days p.i. Expression of gamma interferon (IFN-y) mRNA, which was not observed in normal rat brain, was detected at 14 days p.i. and reached a maximum level at 38 days p.i. IL-2 and IFN-y mRNA expression correlated with expression of CD4 and CD8 mRNAs, indicating that both CD4+ and CD8+ T lymphocytes are induced in the early stages of BDV infection. Since IFN-,y and CD8 mRNA levels were still highly elevated in the chronic phase of Borna disease, it is likely that CD8+ T lymphocytes act to reduce inflammation and to ameliorate neurological signs during the chronic phase of infection.
To ascertain whether viruses present at the time of primary viremia can infect the central nervous system and to determine if microglial tropism is distinct from tropism for monocyte-derived macrophages (MDM), 27 human immunodeficiency virus type 1 (HIV-1) isolates obtained from acutely infected individuals, as well as laboratory strains, were assayed for their ability to replicate in primary adult microglial cultures and in MDM. Most of the isolates replicated equally well in both microglia and MDM, but several isolates replicated preferentially in one of the two cell types, differing by as much as 40-fold in p24 gag production. This indicated that while MDM and microglial tropism overlap, a subset of isolates is particularly tropic for one of the two cell types. One isolate was further adapted to microglia by 15 sequential passages, raising the peak p24 concentration produced by 1,000-fold. In addition, the passaged virus induced marked cytopathologic changes (vacuolization and syncytium formation) in infected microglial cultures. Sequence comparison of the V3 loop of unpassaged and multiply passaged virus revealed amino acid changes shown to be associated with isolates from patients with HIV dementia. Our data support the hypothesis that HIV-1 infection can be established in the central nervous system by viruses present early in HIV infection, that some of these viruses are particularly tropic for microglia, and that adaptation in this cell type can result in the selection of a pool of predominantly microglia-tropic (neurotropic) viruses.
The putative role of nitric oxide in the neuropathogenesis of Borna disease was investigated by determining changes in the expression of inducible nitric oxide synthase (iNOS) mRNA and constitutively expressed NOS (cNOS) mRNA in brains of Borna disease virus (BDV)-infected rats. iNOS mRNA was not detected in normal rat brain but was identified in BDV-infected brain at 14 days postinfection (p.i.), reaching maximum levels at 21 days p.i., when neurological signs and inflammatory reactions in the brain were also at a peak cNOS mRNA was expressed in both normal brain and infected brain, increasing markedly at 17 days p.i. and reaching a peak at 21 days p.i. In situ hybridization analysis revealed iNOS mRNA in some, but not all, BDV-infected regions of the brain, particularly in the basolateral cortex and the hippocampus. iNOS-positive cells, as identified immunohistologically, were preferentially localized in perivascular areas of the hippocampus and in outer cortical layers. These iNOS-positive cells resembled monocytes/macrophages in morphology and distribution pattern but were significantly fewer. The correlation of iNOS and cNOS mRNA expression with the development of neurological disease, as well as the enhanced expression of iNOS within brain regions with inflammatory lesions, strongly suggests that NO may contribute to pathogenesis of Borna disease.
In situ hybridization and Northern blot analysis were used to examine expression of the immediate-early-response genes (IEGs) egr-1, junB, and c-fos, and the late response gene encoding enkephalin in the brains of rats infected intranasally with Borna disease virus (BDV) or rabies virus. In both Borna disease and rabies virus infections, a dramatic and specific induction of IEGs was detected in particular regions of the hippocampus and the cortex. Increased IEG mRNA expression overlapped with the characteristic expression patterns of BDV RNA and rabies virus RNA, although relative expression levels of viral RNA and IEG mRNA differed, particularly in the hippocampal formation. Furthermore, the temporal relationship between viral RNA synthesis and activation of IEG mRNA expression in BDV infection differed markedly from that in rabies virus infection, suggesting that IEG expression is upregulated by different mechanisms. Expression of proenkephalin (pENK) mRNA was also significantly increased in BDV infection, whereas in rabies virus infection, pENK mRNA levels and also the levels of glyceraldehyde-3-phosphate dehydrogenase mRNA were reduced at terminal stages of the disease, probably reflecting a generalized suppression of cellular protein synthesis due to massive production of rabies virus mRNA. The correlation between activated IEG mRNA expression and the strong increase in viral RNA raises the possibility that IEG products induce some phenotypic changes in neurons that render them more susceptible to viral replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.