To increase the biocatalytic activity of Escherichia coli CCZU-T15 whole cells, choline chloride/glycerol ([ChCl][Gly]) was firstly used as biocompatible solvent for the effective biotransformation of ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-CHBE]. Furthermore, L-glutamine (150 mM) was added into [ChCl][Gly]-water ([ChCl][Gly] 12.5 vol%, pH 6.5) media instead of NAD for increasing the biocatalytic efficiency. To further improve the biosynthesis of (S)-CHBE (>99 % e.e.) by E. coli CCZU-T15 whole cells, Tween-80 (7.5 mM) was also added into this reaction media, and (S)-CHBE (>9 % e.e.) could be effectively synthesized from 2000 and 3000 mM COBE in the yields of 100 and 93.0 % by whole cells of recombinant E. coli CCZU-T15, respectively. TEM image indicated that the cell membrane was permeabilized and lost its integrity and when the cell was exposed to [ChCl][Gly]-water media with Tween-80. Clearly, this bioprocess has high potential for the effective biosynthesis of (S)-CHBE (>99 % e.e.).
In this study, sequential biological pretreatment (BP) with Galactomyces sp. CCZU11-1 at 30 °C for 3 days and deep eutectic solvent (DES) choline chloride: oxalic acid (ChCl:OA, 1 mol/2 mol) extraction at 120 °C for 1.5 h was used for pretreating BSS. It was found that combination pretreatment could effectively remove xylan and lignin for enhancing enzymatic saccharification. The reducing sugars and glucose from the hydrolysis of 100 g/L pretreated BSS with complexed cellulases of Galactomyces sp. CCZU11-1 were obtained in the yields of 81.0% and 74.1%, respectively. The BSS-hydrolyzates had no inhibitory effects on the lipid-accumulating microorganism Bacillus sp. CCZU11-1, and the cell mass and TAG accumulation were 4.8 g CDW/L and 2.2 g TAG/L, respectively. Fatty acids including palmitic acid (C16:0; 25.3%), palmitoleic acid (C16:1; 24.4%), stearic acid (C18:0; 15.1%), and oleic acid (C18:1; 21.6%) were accumulated in cells. Clearly, this combination pretreatment has high potential application in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.