Wearable non-invasive sensors facilitate the continuous measurement of glucose in sweat for the treatment and management of diabetes. However, the catalysis of glucose and sweat sampling are challenges in the development of efficient wearable glucose sensors. Herein, we report a flexible wearable non-enzymatic electrochemical sensor for continuous glucose detection in sweat. We synthesized a catalyst (Pt/MXene) by the hybridization of Pt nanoparticles onto MXene (Ti3C2T x ) nanosheets with a broad linear range of glucose detection (0–8 mmol/L) under neutral conditions. Furthermore, we optimized the structure of the sensor by immobilizing Pt/MXene with a conductive hydrogel to enhance the stability of the sensor. Based on Pt/MXene and the optimized structure, we fabricated a flexible wearable glucose sensor by integrating a microfluidic patch for sweat collection onto a flexible sensor. We evaluated the utility of the sensor for the detection of glucose in sweat, and the sensor could detect the glucose change with the replenishment and consumption of energy by the body, and a similar trend was observed in the blood. An in vivo glucose test in sweat indicated that the fabricated sensor is promising for the continuous measurement of glucose, which is essential for the treatment and management of diabetes.
Two-dimensional ordered superstructures have been attracting considerable attention due to their interesting properties and potential applications. However, designing ideal functional superstructures with excellent electrochemical properties is still a major challenge, and an in-depth understanding of the structure− activity relationship of electrodes remains to be achieved. To elucidate this critical issue, herein, we rationally designed and synthesized for the first time superstructured TiO 2 /dual-doped mesoporous carbon anodes using confined space and surface coassembly strategies. Our method primarily relied on the larger interlayer space few-layered MXene and its negatively charged surface, allowing hexamethylenetetramine intercalation and surface electrostatic adsorption. The superstructured TiO 2 /dual-doped mesoporous carbon was successfully assembled by the thermal decomposition of a confined carbon precursor. Subsequently, the comparison of Na + -storage properties of various anodes was carried out based on the results of structural characterization techniques and electrochemical analysis methods. The results showed that the optimized anode (N/O-C@TiO 2 -20) can deliver a reversible capacity of 165 mA h g −1 after 1000 cycles at a current density of 1 A g −1 , indicating excellent electrochemical properties. The enhancement can be attributed to the synergistic effect of carbon domains, defective nanocrystals, and a covalently coupled interface between TiO 2 and mesoporous carbon. Our work not only offered a new strategy for the assembly and regulation of superstructures to promote the electrochemical performance but also enlightened the rational design of advanced anodes for sodium-ion battery application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.