Polerovirus P0 suppressors of host gene silencing contain a consensus F-box-like motif with Leu/Pro (L/P) requirements for suppressor activity. The Inner Mongolian Potato leafroll virus (PLRV) P0 protein (P0(PL-IM)) has an unusual F-box-like motif that contains a Trp/Gly (W/G) sequence and an additional GW/WG-like motif (G139/W140/G141) that is lacking in other P0 proteins. We used Agrobacterium infiltration-mediated RNA silencing assays to establish that P0(PL-IM) has a strong suppressor activity. Mutagenesis experiments demonstrated that the P0(PL-IM) F-box-like motif encompasses amino acids 76-LPRHLHYECLEWGLLCG THP-95, and that the suppressor activity is abolished by L76A, W87A, or G88A substitution. The suppressor activity is also weakened substantially by mutations within the G139/W140/G141 region and is eliminated by a mutation (F220R) in a C-terminal conserved sequence of P0(PL-IM). As has been observed with other P0 proteins, P0(PL-IM) suppression is correlated with reduced accumulation of the host AGO1-silencing complex protein. However, P0(PL-IM) fails to bind SKP1, which functions in a proteasome pathway that may be involved in AGO1 degradation. These results suggest that P0(PL-IM) may suppress RNA silencing by using an alternative pathway to target AGO1 for degradation. Our results help improve our understanding of the molecular mechanisms involved in PLRV infection.
Summary P0 protein of some polerovirus members can target ARGONAUTE 1 ( AGO 1) to suppress RNA silencing. Although P0 harbors an F‐box‐like motif reported to be essential for interaction with S phase kinase‐associated protein 1 ( SKP 1) and RNA silencing suppression, it is the autophagy pathway that was shown to contribute to AGO 1 degradation. Therefore, the role of P0– SKP 1 interaction in silencing suppression remains unclear. We conducted global mutagenesis and comparative functional analysis of P0 encoded by Brassica yellows virus (BrYV) (P0 Br ). We found that several residues within P0 Br are required for local and systemic silencing suppression activities. Remarkably, the F‐box‐like motif mutant of P0 Br , which failed to interact with SKP 1, is destabilized in vivo . Both the 26S proteasome system and autophagy pathway play a role in destabilization of the mutant protein. Furthermore, silencing of a Nicotiana benthamiana SKP 1 ortholog leads to the destabilization of P0 Br . Genetic analyses indicated that the P0 Br – SKP 1 interaction is not directly required for silencing suppression activity of P0 Br , but it facilitates stability of P0 Br to ensure efficient RNA silencing suppression. Consistent with these findings, efficient systemic infection of Br YV requires P0 Br . Our results reveal a novel strategy used by BrYV for facilitating viral suppressors of RNA silencing stability against degradation by plant cells.
The genomic RNA sequences of two genotypes of a brassica-infecting polerovirus from China were determined. Sequence analysis revealed that the virus was closely related to but significantly different from turnip yellows virus (TuYV). This virus and other poleroviruses, including TuYV, had less than 90% amino acid sequence identity in all gene products except the coat protein. Based on the molecular criterion (>10% amino acid sequence difference) for species demarcation in the genus Polerovirus, the virus represents a distinct species for which the name Brassica yellows virus (BrYV) is proposed. Interestingly, there were two genotypes of BrYV, which mainly differed in the 5'-terminal half of the genome.
Melon aphid-borne yellows virus (MABYV) is a newly identified polerovirus occurring in China. Here, we demonstrate that the MABYV encoded P0 (P0(MA)) protein is a strong suppressor of post-transcriptional gene silencing (PTGS) with activity comparable to tobacco etch virus (TEV) HC-Pro. In addition we have shown that the LP F-box motif present at the N-terminus of P0(MA) is required for suppressor activity. Detailed mutational analyses on P0(MA) revealed that changing the conserved Trp 212 with non-ring structured amino acids altered silencing suppressor functions. Ala substitutions at positions 12 and 211 for Phe had no effect on P0 suppression-activity, whereas Arg and Glu substitutions had greatly decreased suppressor activity. Furthermore, substitutions targeting Phe at position 30 also resulted in reduced P0 suppression-activity. Altogether, these results suggest that ring structured Trp/Phe residues in P0 have important roles in suppressor activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.