Tumour cell phagocytosis by antigen presenting cells (APCs) is critical to the generation of antitumour immunity. However, cancer cells can evade phagocytosis by upregulating antiphagocytosis molecule CD47. Here, we show that CD47 blockade alone is inefficient in stimulating glioma cell phagocytosis. However, combining CD47 blockade with temozolomide results in a significant pro-phagocytosis effect due to the latter's ability to induce endoplasmic reticulum stress response. Increased tumour cell phagocytosis subsequently enhances antigen cross-presentation and activation of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) in APCs, resulting in more efficient T cell priming. This bridging of innate and adaptive responses inhibits glioma growth, but also activates immune checkpoint. Sequential administration of an anti-PD1 antibody overcomes this potential adaptive resistance. Together, these findings reveal a dynamic relationship between innate and adaptive immune regulation in tumours and support further investigation of phagocytosis modulation as a strategy to enhance cancer immunotherapy responses.
Regulatory T cells are usually recognized as a specialized subset of CD4+ T cells functioning in establishment and maintenance of immune tolerance. Meanwhile, there is emerging evidence that regulatory T cells (Tregs) are also present in various non-lymphoid tissues, and that they have unique phenotypes credited with activities distinct from regulatory function. Their development and function have been described in plenty of manuscripts in the past two decades. However, with the deepening of research in recent years, emerging evidence revealed some novel mechanisms about how Tregs exert their activities. First, we discuss the expanding family of regulatory lymphocytes briefly and then, try to interpret how fork-head box P3 (Foxp3), a master regulator of the regulatory pathway in the development and function of regulatory T cells, functions. Subsequently, another part of our focus is varieties of tissue Tregs. Next, we primarily discuss recent research on how Tregs work and their faceted functions in terms of soluble mediators, functional proteins, and inhibitory receptors. In particular, unless otherwise noted, the term “Treg” is used here to refer specially to the “CD4+CD25+Foxp3+” regulatory cells.
Various cancer therapies have advanced remarkably over the past decade. Unlike the direct therapeutic targeting of tumor cells, cancer immunotherapy is a new strategy that boosts the host's immune system to detect specific cancer cells for efficient elimination. Nanoparticles incorporating immunomodulatory agents can activate immune cells and modulate the tumor microenvironment to enhance antitumor immunity. Such nanoparticle‐based cancer immunotherapies have received considerable attention and have been extensively studied in recent years. This review thus focuses on nanoparticle‐based platforms (especially naturally derived nanoparticles and synthetic nanoparticles) utilized in recent advances; summarizes delivery systems that incorporate various immune‐modulating agents, including peptides and nucleic acids, immune checkpoint inhibitors, and other small immunostimulating agents; and introduces combinational cancer immunotherapy with nanoparticles, especially nanoparticle‐based photo‐immunotherapy and nanoparticle‐based chemo‐immunotherapy. Undoubtedly, the recent studies introduced in this review prove that nanoparticle‐incorporated cancer immunotherapy is a highly promising treatment modality for patients with cancer. Nonetheless further research is needed to solve safety concerns and improve efficacy of nanoplatform‐based cancer immunotherapy for future clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
As the rate-limiting enzyme in ATP/ADP–AMP–adenosine pathway, CD39 would be a novel checkpoint inhibitor target in preventing adenosine-triggered immune-suppressive effect. In addition, CD39hi Tregs, but not CD25hi Tregs, exhibit sustained Foxp3 levels and functional abilities, indicating it could represent a new specific marker of Tregs. Similarly, inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Far from conclusive, present research revealed that CD39 also dephosphorylated and thus inactivated self- and pathogen-associated phosphoantigens of Vγ9Vδ2 T cells, which may be the most promising subpopulation for cellular vaccine. CD39 is also tightly related to Th17 cells and can be regarded as a Th17 cells marker. In this review, we focus on present research of CD39 ectoenzyme and provide insights into its clinical application.
A major challenge in the development of cancer nanomedicine is the inability for nanomaterials to efficiently penetrate and deliver therapeutic agents into solid tumors. Previous studies have shown that tumor vasculature and extracellular matrix regulate the transvascular and interstitial transport of nanoparticles, both critical for successfully delivering nanomedicine into solid tumors. Within the malignant tumor microenvironment, blood vessels are morphologically abnormal and functionally exhibit substantial permeability. Furthermore, the tumor extracellular matrix (ECM), unlike that of the normal tissue parenchyma, is densely packed with collagen. These pathophysiological properties greatly impede intratumoral delivery of nanomaterials. By using an antivascular endothelial growth factor receptor antibody, DC101, and an antitransforming growth factor β1 (TGF‐β1) antibody, normalization of the tumor vasculature and ECM is achieved, respectively, in a syngeneic murine glioma model. This normalization effect results in a more organized vascular network, improves tissue perfusion, and reduces collagen density, all of which contribute to enhanced nanoparticle delivery and distribution within tumors. These findings suggest that combined vascular and ECM normalization strategies can be used to remodel the tumor microenvironment and improve nanomedicine delivery into solid tumors, which has significant implications for developing more effective combinational therapeutic strategies using cancer nanomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.