A functionalizable organosiliceous hybrid magnetic material was facilely constructed by surface polymerization of octavinyl polyhedral oligomeric silsesquioxane (POSS) on the Fe3O4 nanoparticles. The resultant Fe3O4@POSS was identified as a mesoporous architecture with an average particle diameter of 20 nm and high specific surface area up to 653.59 m(2) g(-1). After it was tethered with an organic chain containing dithiol via thiol-ene addition reaction, the ultimate material (Fe3O4@POSS-SH) still have moderate specific area (224.20 m(2) g(-1)) with almost identical porous morphology. It turns out to be a convenient, efficient single adsorbent for simultaneous elimination of inorganic heavy metal ions and organic dyes in simulate multicomponent wastewater at ambient temperature. The Fe3O4@POSS-SH nanoparticles can be readily withdrawn from aqueous solutions within a few seconds under moderate magnetic field and exhibit good stability in strong acid and alkaline aqueous matrices. Contaminants-loaded Fe3O4@POSS-SH can be easily regenerated with either methanol-acetic acid (for organic dyes) or hydrochloric acid (for heavy metal ions) under ultrasonication. The renewed one keeps appreciable adsorption capability toward both heavy metal ions and organic dyes, the removal rate for any of the pollutants exceeds 92% to simulate wastewater with multiple pollutants after repeated use for 5 cycles. Beyond the environmental remediation function, thanks to the pendant vinyl groups, the Fe3O4@POSS derived materials rationally integrating distinct or versatile functions could be envisaged and consequently a wide variety of applications may emerge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.