Bcl2-associated athanogene (BAG)2 as a co-chaperone has been demonstrated to be involved in tumor growth and metastasis, but its biological function in gastric cancer remains unknown. Here, we reported that BAG2 was highly expressed in gastric cancer cell lines and tissues, indicating poor prognosis. High expression of BAG2 was significantly associated with T stage and differentiation level of gastric cancer (P < 0.001). Functional experiments revealed that BAG2 knockdown in gastric cancer cells inhibited the proliferation, invasion and migration of cells through AKT/mTOR and extracellular regulated kinase (ERK) pathways. Proteomic analysis identified that BAG2 may be involved in the regulation of mitogen-activated protein kinase (MAPK) pathway. In addition, immunoprecipitation showed that BAG2 could bind to ERK1/2. Luciferase reporter assay and Western blot verified that BAG2 was down-regulated by miR186. Taken together, our findings may reveal the basic function of BAG2 and uncover a potential therapeutic target for gastric cancer.
BackgroundThymus is the crucial site for T cell development and once believed to be immune privileged. Recently, thymus has gained special attention as it is commonly targeted by infectious agents which may cause pathogenic tolerance and subsequent immunosuppression.ResultsWe analyzed thymic responses to the challenge with Salmonella typhimurium (STm) or lipopolysaccharide (LPS) derived from STm in chicks. Newly hatched chicks were injected intraperitoneally with 5 × 104 CFU/mL STm or 50 mg/kg LPS. After LPS treatment, maximum thymocyte death (3 ~ 5-fold change) compared to controls was found at 12 h, and maximum loss of thymic weight (35 %) and reduced thymic index (20 %) were found at 36 h. After STm infection, maximum thymocyte death and thymic atrophy occurred at 36 and 72 h, respectively. No significant changes of thymic structure, chT1+ and CD4+/CD8+ T cell ratio were observed in thymus or spleen tissues after LPS treatment. Furthermore, transcriptome analysis revealed important roles for the TLR4-FOS/JUN signaling pathway in thymic injury. Thus, the major process of thymic atrophy in this study first involved activation of transcriptional factors FOS/JUN upon LPS binding to TLR4 that caused release of inflammatory factors, thereby inducing inflammatory responses and DNA damage and ultimately cell cycle arrest and thymic injury.ConclusionsSTm and Salmonella LPS could induce acute chick thymic injury. LPS treatment acted faster than STm. TLR4-FOS/JUN pathway may play an important role in LPS induced chick thymic injury.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2674-6) contains supplementary material, which is available to authorized users.
Oxidative stress plays an important role in the pathogenesis of myocardial infarction (MI). Schisandra chinensis bee pollen extract (SCBPE) possesses powerful antioxidant capacity. This study aimed to further explore the antioxidative and cardioprotective effects of SCBPE on acute MI induced by isoprenaline (ISO) in rats. The rats were intragastrically administrated with SCBPE (600, 1200, or 1800 mg/kg/day) and Compound Danshen dropping pills (270 mg/kg/day) for 30 days, then subcutaneously injected with ISO (65 mg/kg/day) on the 29th and 30th day. Compared with the model group, pretreatment with middle and high doses of SCBPE significantly reduced serum aspartate transaminase, lactate dehydrogenase, and creatine kinase activities and increased myocardial superoxide dismutase, glutathione peroxidase, and catalase activities. The histopathologic aspects showed that pathological heart change was found in the model group and reduced to varying degrees in the SCBPE groups. Moreover, the protein expression of nuclear factor-erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1), and Bcl2 in the heart increased in the SCBPE groups, while that of Bax decreased compared to the model group. Besides this, uridine was isolated from S. chinensis bee pollen for the first time. This study could provide a scientific basis for using Schisandra chinensis bee pollen as a functional food for the prevention of MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.