Cyclin-dependent kinase-5 (CDK5), a serine/threonine kinase which can be activated by its neuron-specific activator p35, or its truncated form p25, plays an important role in a variety of neuronal events, including neuronal migration, synaptic transmission, and neuronal death. Accumulating evidence has shown that abnormal activation of CDK5 was a critical neuronal pro-death signal in central nervous system (CNS) diseases. However, it remains unclear how CDK5 functions upon neuronal apoptosis following intracerebral hemorrhage (ICH). In the present study, we established ICH models by injecting autologous whole blood into the right basal ganglia of adult rats and assessed their neurological deficits by behavioral tests. CDK5 protein levels and kinase activities were upregulated adjacent to the hematoma following ICH. Immunofluorescent staining showed CDK5 was mainly localized in neurons, rather than in astrocytes or oligodendrocytes. Furthermore, active caspase-3, an apoptotic marker, showed a temporally parallel expression with the protein levels/kinase activities of CDK5 following ICH. Meantime, myocyte enhancer factor 2D (MEF2D), a pro-survival transcription factor which could be phosphorylated inactivation by CDK5, also exhibited high phosphorylation levels following ICH. In vitro, we obtained a consistent upregulation of CDK5 kinase activity in primary cortical neurons after thrombin treatment. Knocking down CDK5 kinase activity suppressed neuronal apoptosis and coupled with reduced MEF2D phosphorylation at ser(444) residues. Thus, we speculated that CDK5 might exert an important function in the regulation of neuronal apoptosis following ICH.
EP3 is prostaglandin E2 receptor subtype 3 and mediates the activation of several signaling pathways, changing in cAMP levels, calcium mobilization, and activation of phospholipase C. Previous studies demonstrated a direct role for EP3 in various neurodegenerative disorders, such as stroke and Alzheimer disease. However, the distribution and function of EP3 in ICH diseases remain unknown. Here, we demonstrate that EP3 may be involved in neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). From the results of Western blot and immunohistochemistry, we obtained a significant up-regulation of EP3 in neurons adjacent to the hematoma following ICH. Up-regulation of EP3 was found to be accompanied by the increased expression of active caspase-3 and pro-apoptotic Bcl-2-associated X protein (Bax) and decreased expression of anti-apoptotic protein B cell lymphoma-2 (Bcl-2) in vivo and vitro studies. Furthermore, the expression of these three proteins reduced active caspase-3 and Bax expression, while increased Bcl-2 were changed after knocking down EP3 by RNA interference in PC12 cells, further confirmed that EP3 might exert its pro-apoptotic function on neuronal apoptosis. Thus, EP3 may play a role in promoting the neuronal apoptosis following ICH.
The novel Krüppel-like zinc finger protein Gli-similar 2 (Glis2), one member of the transcription factors, is involved in controlling the flow of genetic information and the modulation of diverse cellular activities. Accumulating evidence has demonstrated its important roles in adult development and several diseases. However, information regarding the regulation and possible function of Glis2 in the central nervous system is still limited. In this study, we explored the roles of Glis2 during the pathophysiological process of intracerebral hemorrhage (ICH). An ICH rat model was established and assessed by behavioral tests. Expression of Glis2 was significantly up-regulated in brain areas surrounding the hematoma following ICH. Immunofluorescence showed that Glis2 was strikingly increased in neurons, but not astrocytes or microglia. Up-regulation of Glis2 was found to be accompanied by the increased expression of active caspase-3 and Bax and decreased expression of Bcl-2 in vivo and vitro studies. Moreover, knocking down Glis2 by RNA-interference in PC12 cells reduced active caspase-3 and Bax expression while increased Bcl-2. Collectively, we speculated that Glis2 might exert pro-apoptotic function in neurons following ICH.
Initial exposure of macrophages to LPS induces hyporesponsiveness to a second challenge with LPS, a phenomenon termed LPS tolerance. Smad4 plays important roles in the induction of LPS tolerance. However, the function of Smad4 in microglia remains unknown. Here we show that expression of Smad4 was highly up-regulated in LPS-tolerized mouse cerebral cortex. Smad4 was mostly colocalized with microglia, rarely with neurons. Using a microglia cell line, BV2, we find that LPS activates endogenous Smad4, inducing its migration into the nucleus and increasing its expression. Smad4 significantly suppressed TLR-triggered production of proinflammatory cytokines (IL-6), increased anti-inflammatory cytokine in LPS-tolerized microglia. Moreover, IL-6 concentrations in culture supernatants after second LPS challenge are higher in SMAD4 small interfering RNA (siRNA) BV2 cells than control siRNA BV2 cells, indicating failure to induce tolerance in absence of Smad4 signaling. In our study, we conclude that both in vivo and in vitro, Smad4 signaling is required for maximal induction of endotoxin tolerance.
Poly(C)-binding proteins (PCBPs), also known as RNA-binding proteins, interact in a sequence-specific fashion with single-stranded poly(C). It was reported that PCBP2 contributed to gastric cancer proliferation and survival through miR-34a, and knockdown of PCBP2 inhibited glioma proliferation through inhibition of cell cycle progression. In addition, PCBP2 might play a critical role in the regulation of cortical neurons apoptosis induced by hypoxia or ischemia. Because of the essential role of PCBP2 in nervous system and cell growth, we investigated the spatiotemporal expression of PCBP2 in a rat sciatic nerve crush (SNC) model. We detected the upregulated expression of PCBP2 in Schwann cell after SNC. Besides, the peak expression of PCBP2 was in parallel with proliferation cell nuclear antigen. In vitro, we observed increased expression of PCBP2 during the process of TNF-α-induced Schwann cell proliferation. Specially, PCBP2-specific siRNA-transfected Schwann cell showed significantly decreased ability for proliferation. Together, all these data indicated that the change of PCBP2 protein expression was associated with Schwann cell proliferation after the trauma of the peripheral nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.