We investigate the detection prospects of a non-standard dark sector in the context of boosted dark matter. We consider a scenario where two stable particles have a large mass difference and the heavier particle accounts for most of dark matter in our current universe. The heavier candidate is assumed to have no interaction with the standard model particles at tree-level, hence evading existing constraints. Although subdominant, the lighter dark matter particles are efficiently produced via pair-annihilation of the heavier ones in the center of the Galaxy or the Sun. The large Lorentz boost enables detection of the non-minimal dark sector in large volume terrestrial experiments via exchange of a light dark photon with electrons or nuclei. Various experiments designed for neutrino physics and proton decay are examined in detail, including Super-K and Hyper-K. In this study, we focus on the sensitivity of the far detector at the Deep Underground Neutrino Experiment for boosted dark matter produced in the center of the Sun, and compare our findings with recent results for boosted dark matter produced in the galactic center.
We investigate the sensitivity of the 14 TeV LHC to pair-produced top partners (T ) decaying into the Standard Model top quark (t) plus either a gluon (g) or a photon (γ). The decays T → tg and T → tγ can be dominant when the mixing between the top partner and top quark are negligible. In this case, the conventional decays T → bW , T → tZ, and T → th are highly suppressed and can be neglected. We take a model-independent approach using effective operators for the T -t-g and T -t-γ interactions, considering both spin-1 2 and spin-3 2 top partners. We perform a semirealistic simulation with boosted top quark tagging and an appropriate implementation of a jet-faking-photon rate. Despite a simple dimensional analysis indicating that the branching ratios BR(T → tγ) BR(T → tg) due to the electric-magnetic coupling being much smaller than the strong force coupling, our study shows that the LHC sensitivity to TT → ttγg is more significant than the sensitivity to T T → ttgg. This is due to much smaller backgrounds attributed to the isolated high-p T photon. We find that with these decay channels and 3 ab −1 of data, the LHC is sensitive to top partner masses m T 1.4 − 1.8 TeV for spin-1 2 and spin-3 2 top partners, respectively.
Intriguing signals with excesses over expected backgrounds have been observed in many astrophysical and terrestrial settings, which could potentially have a dark matter origin. Astrophysical excesses include the Galactic Center GeV gamma-ray excess detected by the Fermi Gamma-Ray Space Telescope, the AMS antiproton and positron excesses, and the 511 and 3.5 keV X-ray lines. Direct detection excesses include the DAMA/LIBRA annual modulation signal, the XENON1T excess, and low-threshold excesses in solid state detectors. We discuss avenues to resolve these excesses, with actions the field can take over the next several years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.